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INTRODUCTION

This document is intended to de�ne the standard reference system to be used by the International

Earth Rotation Service (IERS). It is based on the Project MERIT Standards (Melbourne et al., 1983)
and the IERS Standards (McCarthy, 1989; McCarthy, 1992) with revisions being made to re
ect

improvements in models or constants since the IERS Standards were published. If contributors to

IERS do not fully comply with these guidelines, they will carefully identify the exceptions. In these

cases, the institution is obliged to provide an assessment of the e�ects of the departures from the

conventions so that its results can be referred to the IERS Reference System. Contributors may use

models equivalent to those speci�ed herein. Di�erent observing methods have varying sensitivity to

the adopted standards and reference systems. No attempt has been made in this document to assess

the sensitivity of each technique to the adopted reference systems and standards.

The recommended system of astronomical constants corresponds closely to those of the previous

IERS Standards with the exception of the changes listed below. The units of length, mass, and time are

in the International System of Units (SI) (Le Syst�eme International d'Unit�es (SI), 1991) as expressed

by the meter (m), kilogram (kg) and second (s). The astronomical unit of time is the day containing

86400 SI seconds. The Julian century contains 36525 days.

Di�erences Between This Document and IERS Technical Note 13

Most chapters of IERS Technical Note 13 have been revised, and known typographical errors

contained in that work have been corrected in this edition. There are some major di�erences between

the current work and the past IERS Standards. The following is a brief list of the major modi�cations

by chapter.

CHAPTER 2 IERS Dynamical Reference Frame

The JPL DE 403 ephemeris (Standish et al., 1995) replaces the DE 200 model of IERS Technical

Note 13.

CHAPTER 3 IERS Terrestrial Reference System

The NUVEL NNR-1A Model (DeMets et al., 1994) for plate motion has replaced the Nuvel

NNR-1 Model of IERS Technical Note 13.

CHAPTER 4 Numerical Standards

Numerical values are now given only for the most fundamental constants along with their uncer-

tainties and references. Constants which have been changed include the astronomical unit in seconds

and meters, precession, obliquity, equatorial radius, 
attening factor and dynamical form factor of the

Earth, constant of gravitation, geocentric and heliocentric gravitational constant.

CHAPTER 5 Transformation Between Celestial and Terrestrial Reference Systems

An empirical model to be used to predict the di�erence in the celestial pole coordinates between

those published by the IERS and those given by the IAU model is added.
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CHAPTER 6 Geopotential

The JGM3 model replaces the GEM-T3. Love Numbers are revised.

CHAPTER 7 Local Site Displacements

The printed table of the components of site displacement due to ocean loading is no longer

included. References to machine- readable �les are given. Love Numbers are revised. Atmospheric

loading and postglacial rebound are included.

CHAPTER 8 Tidal Variations in UT1

The subdaily and daily tidal variations in Earth orientation due to the e�ect of ocean tides has

been added.

CHAPTER 12 General Relativistic Models for Propagation

The formulation has been modi�ed to be consistent with IAU/IUGG resolutions.

Contributors

Z. Altamimi S. R. Dickman R. Langley J. R. Ray

B. Archinal R. Eanes B. Luzum R. Ray

E. F. Arias T. M. Eubanks C. Ma J. Ries

S. Bettadpur M. Feissel P. M. Mathews M. Rothacher

K. Borkowski H. Fliegel D. N. Matsakis H.-G. Scherneck

C. Boucher T. Fukushima V. Mendes B. E. Schutz

P. Brosche J. Gipson A. E. Niell P. Schwintzer

M. Bur�sa R. Gross R. Noomen P. K. Seidelmann

N. Capitaine E. Groten T. Otsubo E. M. Standish

M. S. Carter T. A. Herring S. Pagiatakis J. A. Steppe

P. Cook G. H. Kaplan E. C. Pavlis T. vanDam

V. Dehant J. Kovalevsky W. R. Peltier J. Verheijen

Errata from Technical Note 13

p. 9: GPS Block II dz = 0:9519m vice 1:0229m.

p. 18: Table 3.1, �rst line, last value should be �0:0070 vice 0:0070.
p. 83: Hobart Q1 EW tangential phase should be 160:4 vice �160:4.
p. 89: Malibu M2 EW tangential phase should be �142:4 vice 142:4.
p. 98: Pearblossom M2 radial phase should be �24:14 vice 24:1.
p. 137: paragraph 3, read : : :of the International Astronomical Union.

p. 137: the formula reads

ds2 = �c2d�2

= �
�
1�

2U

c2

�
(dx0)2 +

�
1 +

2U

c2

�
[(dx1)2 + (dx2)2 + (dx3)2)]:

(the minus sign was omitted in the second line)
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p. 140, note 2: the formulae giving TCB-TCG read

TCB � TCG = c�2[

Z t

t0

(v2e=2 + Uext(xe)dt+ ve:(x� xe)]:

TCB � TCG = LC � (JD � 2443144:5)� 86400+ c�2ve:(x� xe) + P:

(the \." in the vector product ve:(x� xe) was omitted)
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CHAPTER 1 CONVENTIONAL CELESTIAL REFERENCE SYSTEM

In 1991 the International Astronomical Union (IAU) decided that the IAU celestial reference sys-

tem would be realized by a celestial reference frame de�ned by the precise coordinates of extragalactic

radio sources. The related IAU recommendations (see McCarthy, 1992) specify that the origin is to

be at the barycenter of the solar system and the directions of the axes are to be �xed with respect to

the quasars. In compliance with this recommendation, the IERS Celestial Reference System (ICRS) is

realized by the IERS Celestial Reference Frame (ICRF) de�ned by the J2000.0 equatorial coordinates

of extragalactic objects determined from Very Long Baseline Interferometry (VLBI) observations. It

is a frame whose directions are consistent with those of the FK5 (Fricke et al., 1988). The origin is

located at the barycenter of the solar system through appropriate modeling of observations in the

framework of General Relativity (see Chapters 2 and 12). The rotational stability of the frame is

based on the assumption that the sources have no proper motions. Checks are performed regularly to

ensure the validity of this constraint (Ma and Sha�er, 1991; Eubanks et al., 1994). The HIPPARCOS

reference frame is planned to be linked astrometrically to the ICRF to unify the radio and optical

coordinate systems at the level of �000.0005 in direction and �000.0005/year in rotation (Lindegren and

Kovalevsky, 1995). The ICRS is recommended for the IAU conventional celestial system by the IAU

Working Group on Reference Frames under the name \International Celestial Reference System." See

Arias et al. (1995).

Equator

The IAU recommendations call for the principal plane of the conventional reference frame to

be close to the mean equator at J2000.0. The VLBI observations which are used to establish the

extragalactic reference frame also provide the monitoring of the motion of the celestial pole in the sky

(precession and nutation). In this way, the VLBI analyses provide corrections to the conventional IAU

models for precession and nutation (Lieske et al., 1977; Seidelmann, 1982) and the accurate estimation
of the shift of the mean pole at J2000.0 relative to its conventional one, to which the pole of the ICRS

is attached. Based on the VLBI observations available in early 1995 and the IERS correction model

for precession and nutation (see Chapters 4 and 5), one can estimate the shift of the pole at J2000.0

relative to the IERS celestial pole to be 17.3 � 0.2 mas in the direction 12h and 5.1 � 0.2 mas in the

direction 18h.

On the other hand, the IAU recommendations stipulate that the direction of the new conventional

celestial pole be consistent with that of the FK5. The uncertainty in the direction of the FK5 pole can

be estimated by considering (1) that the systematic part is dominated by a correction of �000.25/cy to
the precession constant imbedded in the FK5 System, and (2) by adopting Fricke's (1982) estimation

of the accuracy of the FK5 equator (�000.02), and Schwan's (1988) estimation of the limit of the residual
rotation (�000.07/cy), taking the epochs of observations from Fricke et al. (1988). Assuming that the

error in the precession rate is absorbed by the proper motions of stars, the uncertainty in the FK5 pole

position relative to the mean pole at J2000.0 estimated in this way is � 50 mas. The IERS celestial

pole is therefore consistent with that of the FK5 within the uncertainty of the latter.

Origin of Right Ascension

The IAU recommends that the origin of right ascensions of the new celestial reference system

be close to the dynamical equinox at J2000.0. The x axis of the IERS celestial system was implicitly

de�ned in the initial realization (Arias et al., 1988) by adopting the mean right ascension of 23 radio
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sources in a group of catalogs that were compiled by �xing the right ascension of 3C 273B to the usual

(Hazard et al., 1971) conventional FK5 value (12h29m6s:6997 at J2000.0) (Kaplan et al., 1982).

The uncertainty in the FK5 origin of right ascensions can be derived from the quadratic sum of

the accuracies given by Fricke (1982) and Schwan (1988), considering a mean epoch of 1955 for the

proper motions in right ascension. The uncertainty thus obtained is � 80 mas. Folkner et al. (1994),

comparing VLBI and LLR Earth orientation and terrestrial frames and the estimated frame tie of

planetary ephemerides, show that the mean equinox of J2000.0 is shifted from the right ascension

origin of the IERS system by 78 � 10 mas (direct rotation around the polar axis). This shows that

the ICRS origin of right ascension complies with the IAU recommendations.

Precision and Accuracy

The estimation of coordinates performed by the Central Bureau of the IERS is based on individual

frames contributed by the IERS Analysis Centers. Several extragalactic frames are produced each year

by independent VLBI groups. Selected realizations are used to form the ICRF. The algorithm used

for the compilation is designed primarily to maintain the three directions of axes �xed for successive

realizations while the precision of coordinates of individual sources is improved. Successive realizations

produced up to now have maintained the initial de�nition of the axes within �000.0001.

The inaccuracy of the conventional IAU 1976 Precession and IAU 1980 Theory of Nutation

would give rise to systematic errors in the source positions and to misorientation of the axes of the

frames, both at the level of a few milliarcseconds, in the analysis of VLBI observations. Therefore,

the usual practice in catalog work is to estimate additional parameters which describe the motion of

the celestial pole relative to its conventional position (see Sovers, 1991). Another type of possible

systematic error is related to low elevation observations in cases where the observing network has a

modest north-south extension. This e�ect can be modelled as a linear dependence of declination errors

on declination which can reach 0.01 mas per degree and create a tilt of the frame equator of up to

0.6 mas (Feissel et al., 1995). However, for recent global analyses these systematic di�erences are at
the level of 0.001 mas per degree and 0.1 mas respectively (IERS, 1995). No other type of systematic

di�erences can be found above this level in the present-day VLBI celestial reference frames (Feissel

et al., 1995, Eubanks et al., 1994). After taking into account the small systematic errors mentioned

above, the precision of the source coordinates is a white noise function of the number of observations,

with a typical value of � 0.2 mas for 100 observations (Arias et al., 1995).

Availability of the Frame

The catalog of source coordinates published in the 1994 IERS Annual Report (July 1995) provides

access to the ICRS. It includes a total of 608 objects, among which 236 with good observational histories

attach the frame to the ICRS. In the future, based on new observations and new analyses, the stability

of the source coordinates will be monitored, and the appropriate warnings and updates will appear in

IERS publications.

The direct access to the quasars is most precise through VLBI observations, a technique which

is not widely available to users. Therefore, while VLBI is used for the maintenance of the frame, the

tie of the ICRF to the major practical reference frames may be obtained through use of the IERS

Terrestrial Reference Frame (ITRF, see Chapter 3), the HIPPARCOS Galactic Reference Frame, and

the JPL ephemerides of the solar system (see Chapter 2).
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The principles on which the ITRF is established and maintained are described in Chapter 3.

The IERS Earth orientation parameters provide the permanent tie of the ICRF to the ITRF. They

describe the orientation of the Celestial Ephemeris Pole in the terrestrial system and in the celestial

system (polar coordinates x, y; nutation o�sets d , d�) and the orientation of the Earth around this

axis (UT1-TAI), as a function of time. This tie is available daily with an accuracy of � 0.5 mas in the

IERS publications.

The other ties to major celestial frames are established by di�erential VLBI observations of

solar system probes, galactic stars relative to quasars and other ground- or space-based astrometry

projects. The tie of the solar system ephemerides of the Jet Propulsion Laboratory (JPL) is described

by Standish et al. (1995). Its estimated precision is � 3 mas, according to Folkner et al. (1994). The
tie of the galactic frame to ICRS is a part of the HIPPARCOS project. It is described in some detail

by Lindegren and Kovalevsky (1995). Its expected accuracy is � 0.5 mas at the HIPPARCOS mean

epoch of observation (1991.25) and � 0.5 mas/year for the time evolution.
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CHAPTER 2 CONVENTIONAL DYNAMICAL REFERENCE FRAME

The planetary and lunar ephemerides recommended for the IERS standards are the JPL De-

velopment Ephemeris DE403 and the Lunar Ephemeris LE403 (Standish et al., 1995). The reference
frame of these new ephemerides is that of ICRF. The ephemerides have been adjusted to all rele-

vant observational data, including recent observations taken with respect to the IERS frame. It is

expected that DE403/LE403 will eventually replace DE200/LE200 (Standish, 1990) as the basis for

the international almanacs.

Table 2.1 shows the IAU 1976 values of the planetary masses and the values used in the creation

of both DE200/LE200 and of DE403/LE403. Also shown in the table are references for the DE403

set, the current best estimates.

Also associated with the ephemerides is the set of astronomical constants used in the ephemeris

creation; these are listed in Table 2.2.

The constants which are provided directly with the ephemerides should be considered to be an

integral part of them; they will sometimes di�er from a more standard set, but the di�erences are

necessary for the optimal �tting of the data.

Availability of DE403

Sections of DE403 are now available from the anonymous ftp site: \navigator.jpl.nasa.gov"

[128.149.23.82]. For a \navio" version (in-house JPL format), the following \navio" and \nioftp"

versions are available, covering 1980-2010:

\navigator:/ephem/navio/de403s" and \navigator:/ephem/navio/de403s.ftp"

For other time-spans, contact F A McCreary (faith@viviane.jpl) or E M Standish (ems@smyles.jpl).

An outside user is advised to �rst get and read the �le, \navigator:/ephem/export/READ.ME"; it

should answer most questions about retrieving and using the JPL ephemerides.

Table 2.1. 1976 IAU, DE200 and DE403 planetary mass values, expressed in reciprocal solar masses.

Planet 1976 IAU DE200 DE403 Reference for DE403 value

Mercury 6023600. 6023600. 6023600. Anderson et al., 1987

Venus 408523.5 408523.5 408523.71 Sjogren et al., 1990
Earth & Moon 328900.5 328900.55 328900.560392... Williams et al., 1995
Mars 3098710. 3098710. 3098708. Null, 1969

Jupiter 1047.355 1047.350 1047.3486 Campbell and Synott, 1985

Saturn 3498.5 3498.0 3497.898 Campbell and Anderson, 1989

Uranus 22869. 22960. 22902.98 Jacobson et al., 1992

Neptune 19314. 19314. 19412.24 Jacobson et al., 1991

Pluto 3000000. 130000000. 135200000. Tholen and Buie, 1996
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Table 2.2. Auxiliary constants from the JPL Planetary and Lunar Ephemerides DE403/LE403.

Scale (km/au) 149597870.691

Scale (secs/au) 499.0047838061...

Speed of light (km/sec) 299792.458

Obliquity of the ecliptic 23�2602100.412

Earth-Moon mass ratio 81.300585

GMCeres 4.64 �10�10GMSun

GMPallas 1.05 �10�10GMSun

GMV esta 1.34 �10�10GMSun

densityclassC 1.80

densityclassS 2.40

densityclassM 5.00
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CHAPTER 3 CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM

De�nition

The Terrestrial Reference System adopted for either the analysis of individual data sets by

techniques (VLBI, SLR, LLR, GPS, DORIS, PRARE...) or the combination of individual solutions

into a uni�ed set of data (station coordinates, Earth orientation parameters, etc...) follows these

criteria (Boucher, 1990):

a) It is geocentric, the center of mass being de�ned for the whole Earth, including oceans and

atmosphere.

b) Its scale is that of a local Earth frame, in the meaning of a relativistic theory of gravitation.

c) Its orientation was initially given by the BIH orientation at 1984.0.

d) Its time evolution in orientation will create no residual global rotation with regards to the crust.

Realization

A Conventional Terrestrial Reference System (CTRS) can be realized through a reference frame

i.e. a set of coordinates for a network of stations. Such a realization will be speci�ed by cartesian

equatorial coordinates X , Y , and Z, by preference. If geographical coordinates are needed, the

GRS80 ellipsoid is recommended (a=6378137.0 m, eccentricity2 =0.00669438003). The CTRS which

is monitored by IERS is called the International Terrestrial Reference System (ITRS) and is speci�ed

by the IUGG Resolution no. 2 adopted at the 20th IUGG General Assembly of Vienna in 1991.

Each analysis center should compare its reference frame to a realization of the ITRS. Within

IERS, each Terrestrial Reference Frame (TRF) is either directly, or after transformation, expressed as

a realization of the ITRS. The position of a point located on the surface of the solid Earth should be

expressed by
~X(t) = ~X0 + ~V0(t� t0) +

X
i

� ~Xi(t);

where � ~Xi are corrections due to various time changing e�ects, and ~X0 and ~V0 are position and velocity

at the epoch t0. The corrections to be considered are solid Earth tide displacement (full correction

including permanent e�ect, see Chapter 7), ocean loading, post glacial rebound, and atmospheric

loading. Further corrections could be added if they are at mm level or greater, and can be computed

by a suitable model.

Realizations of the ITRS are produced by IERS under the name International Terrestrial Refer-

ence Frames (ITRF), which consist of lists of coordinates (and velocities) for a selection of IERS sites

(tracking stations or related ground markers). Currently, ITRF-yy is published annually by the IERS

in the Technical Notes (cf. Boucher et al., 1996). The numbers (yy) following the designation \ITRF"

specify the last year whose data were used in the formation of the frame. Hence ITRF94 designates the

frame of coordinates and velocities constructed in 1995 using all of the IERS data available through

1994. More recently, since 1993, other special realizations have been produced, such as solutions for

IGS core stations (ITRF-Py series) (IGS, 1995). It is also anticipated that monthly series may be

determined.

10



Terrestrial reference frames may be de�ned within systems which account for the e�ect of the

permanent tide di�erently. In the terminology of Ekman (1989), Rapp (1991) and Poutanen et al.

(1996) the permanent or \zero{frequency" tide is retained in the \zero{tide" system. In this system

the crust corresponds to the realistic time average of the crust which varies because of the action of

the luni{solar tides. In a di�erent system referred to as \tide{free," all of the e�ects of the permanent

tide are removed. This is not realistic since the crust in this case cannot be \observed," nor are the

Love Numbers required to describe the permanent tide known adequately. No error is associated with

either convention as long as it is clear which system is employed in the analysis of the data. A third

\mean{tide" system has been de�ned in which the crust is equivalent to that of the tide{free system

and, in which, the e�ect of the permanent tide is also removed from the geoid.

Coordinates of the ITRF are given in a conventional frame where the e�ects of all tides are

removed as recommended in IERS Technical Note 13 (McCarthy, 1992). There, it is recommended

that equation 6 on p. 57 be used to account for the permanent tide. Note that this is in contradiction

to Resolution 16 of the General Assembly of the IAG in 1983. The corresponding equation in this

publication is equation 8 of Chapter 7. To place the coordinates in a zero-tide system it is necessary to

apply equation 8 of IERS Technical Note 13 (McCarthy, 1992) or the corresponding version, equation

17 of Chapter 7 in this publication.

In data analysis, ~X0 and ~V0 should be considered as solve-for parameters. In particular, if a non-

linear change occurs (earthquake, volcanic event ...), a new ~X0 should be adopted. When adjusting

parameters, particularly velocities, the IERS orientation should be kept at all epochs, ensuring the

alignment at a reference epoch and the time evolution through a no net rotation condition. The way

followed by various analysis centers depends on their own view of modelling, and on the techniques

themselves. For the origin, only data which can be modelled by dynamical techniques (currently SLR,

LLR, GPS or DORIS for IERS) can determine the center of mass. The VLBI system can be referred to

a geocentric system by adopting for a station its geocentric position at a reference epoch as provided

from external information.

The scale is obtained by appropriate relativistic modelling. Speci�cally, according to IAU and

IUGG resolutions, the scale is consistent with the TCG time coordinate for a geocentric local frame. A

detailed treatment can be found in Chapter 11. The orientation is de�ned by adopting IERS (or BIH)

Earth orientation parameters at a reference epoch. In the case of dynamical techniques, an additional

constraint in longitude is necessary to remove ill-conditioning.

The unit of length is the meter (SI). The IERS Reference Pole (IRP) and Reference Meridian

(IRM) are consistent with the corresponding directions in the BIH Terrestrial System (BTS) within

�000.005. The BIH reference pole was adjusted to the Conventional International Origin (CIO) in 1967;

it was then kept stable independently until 1987. The uncertainty of the tie of the IRP with the CIO

is �000.03. The time evolution of the orientation will be ensured by using a no-net-rotation condition

with regards to horizontal tectonic motions over the whole Earth.

Transformation Parameters to World Coordinate Systems and Various Datums

The seven-parameter similarity transformation between any two Cartesian systems, e.g., from

(x; y; z) to (xs; ys; zs) can be written as0
@ xs

ys

zs

1
A =

0
@x

y

z

1
A+

0
@T1

T2

T3

1
A+

0
@ D �R3 R2

R3 D �R1
�R2 R1 D

1
A
0
@x

y

z

1
A ; (1)
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where T1, T2, T3 = coordinates of the origin of the frame (xs; ys; zs) in the frame (x; y; z);R1; R2; R3=

di�erential rotations (expressed in radians) respectively, around the axes (xs; ys; zs) to establish par-

allelism with the (x; y; z) frame; and D = di�erential scale change.

The use of the previous algorithm to transform coordinates from one datum to another must be

done with care. At some level of accuracy, each reference system has multiple realizations. In many

cases, two such realizations of the same system have nonzero transformation parameters. The usual

reason is that such parameters are currently adjusted between two sets of coordinates. In this case,

any global systematic error which can be mapped into a scale, shift or rotation will go into these seven

parameters.

Therefore we give here (Table 3.1) only parameters from ITRF94 to previous ITRF series. These

numbers are the responsibility of the IERS. For other transformations, either to global systems (such

as WGS84) or regional (such as NAD83 or ETRS89), or even local systems, users should contact

relevant agencies. For WGS84, the main result is that the most recent realizations of WGS84 based

on GPS are consistent with the ITRF realization at the 0.1 meter level (Malys and Slater, 1994).

Otherwise, one can refer to IAG bodies, such as Commission X on Global and Regional Geodetic

Networks (Geodesist's Handbook, 1996).

Table 3.1. Transformation parameters from ITRF94 to past ITRFs. \ppb" refers to parts per billion

(109). Rates must be applied for ITRF93. The units for rate are understood to be \per year."

Coordinate

System T1 T2 T3 D R1 R2 R3

(datum) (cm) (cm) (cm) (ppb) (mas) (mas) (mas) Epoch

ITRF88 1.8 0.0 -9.2 7.4 0.1 0.0 0.0 1988.0

ITRF89 2.3 3.6 -6.8 4.3 0.0 0.0 0.0 1988.0

ITRF90 1.8 1.2 -3.0 0.9 0.0 0.0 0.0 1988.0

ITRF91 2.0 1.6 -1.4 0.6 0.0 0.0 0.0 1988.0

ITRF92 0.8 0.2 -0.8 -0.8 0.0 0.0 0.0 1988.0

ITRF93 0.6 -0.5 -1.5 0.4 -0.39 0.80 -0.96 1988.0

rates -0.29 0.04 0.08 0.00 -0.11 -0.19 0.05

Once the Cartesian coordinates (x; y; z) are known, they can be transformed to \datum" or

curvilinear geodetic coordinates (�; �; h) referred to an ellipsoid of semi-major axis a and 
attening

f , using the following code (Borkowski, 1989). First compute � = tan�1( y
x
) properly determining the

quadrant from x and y (0 � � < 2�) and r =
p
x2 + y2 .

subroutine GEOD(r,z,fi,h)

c Program to transform Cartesian to geodetic coordinates

c based on the exact solution (Borkowski,1989)

c Input : r, z = equatorial [m] and polar [m] components

c Output: fi, h = geodetic coord's (latitude [rad], height [m])

implicit real*8(a-h,o-z)

c GRS80 ellipsoid: semimajor axis (a) and inverse flattening (fr)

data a,fr /6378137.d0,298.257222101d0/

b = dsign(a - a/fr,z)

E = ((z + b)*b/a - a)/r

F = ((z - b)*b/a + a)/r
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c Find solution to: t**4 + 2*E*t**3 + 2*F*t - 1 = 0

P = (E*F + 1.)*4.d0/3.d0

Q = (E*E - F*F)*2.d0

D = P*P*P + Q*Q

if(D.ge.0d0) then

s = dsqrt(D) + Q

s = dsign(dexp(dlog(dabs(s))/3.d0),s)

v = P/s - s

c Improve the accuracy of numeric values of v

v = -(Q + Q + v*v*v)/(3.d0*P)

else

v = 2.d0*dsqrt(-P)*dcos(dacos(Q/P/dsqrt(-P))/3.d0)

endif

G = .5d0*(E + dsqrt(E*E + v))

t = dsqrt(G*G + (F - v*G)/(G + G - E)) - G

fi = datan((1.d0 - t*t)*a/(2.d0*b*t))

h = (r - a*t)*dcos(fi) + (z - b)*dsin(fi)

return

end

Plate Motion Model

One of the factors which a�ect Earth rotation results is the motion of the tectonic plates which

make up the Earth's surface. As the plates move, �xed coordinates for the observing stations become

inconsistent with each other. The rates of relative motions for some observing sites are 5 cm per year

or larger. The observations of plate motions by modern methods appear to be roughly consistent

with the average rates over the last few million years derived from the geological record and other

geophysical information. Thus, the NNR-NUVEL1A model for plate motions given by DeMets et al.
(1994) is recommended.

If a velocity has not yet been determined in the ITRF for a particular station, the velocity ~V0
should be expressed as

~V0 = ~Vplate + ~Vr

where ~Vplate is the horizontal velocity computed from the NNR-NUVEL1A model (DeMets et al.,

1994) and ~Vr a residual velocity.

The Cartesian rotation vector for each of the major plates is given in Table 3.2. A subroutine

called ABSMO NUVEL is also included below. It computes the new site position from the old site

position using the recommended plate motion model. Fig. 3.1 shows the plates on a map of the world.
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Figure 3.1. Map of the tectonic plates.

Table 3.2. Cartesian rotation vector for each plate using the NNR-NUVEL1A kinematic plate model

(no net rotation).


x 
y 
z

Plate Name rad/My. rad/My. rad/My.

Paci�c -0.001510 0.004840 -0.009970

Cocos -0.010425 -0.021605 0.010925

Nazca -0.001532 -0.008577 0.009609

Caribbean -0.000178 -0.003385 0.001581

South America -0.001038 -0.001515 -0.000870

Antarctica -0.000821 -0.001701 0.003706

India 0.006670 0.000040 0.006790

Australia 0.007839 0.005124 0.006282

Africa 0.000891 -0.003099 0.003922

Arabia 0.006685 -0.000521 0.006760

Eurasia -0.000981 -0.002395 0.003153

North America 0.000258 -0.003599 -0.000153

Juan de Fuca 0.005200 0.008610 -0.005820

Philippine 0.010090 -0.007160 -0.009670

Rivera -0.009390 -0.030960 0.012050

Scotia -0.000410 -0.002660 -0.001270

The NNR-NUVEL1A model should be used as a default, for stations which appear to follow
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reasonably its values. For some stations, particularly in the vicinity of plate boundaries, users may

bene�t by estimating velocities or using speci�c values not derived from NNR-NUVEL1A. This is also

a way to take into account now some non- negligible vertical motions. Published station coordinates

should include the epoch associated with the coordinates.

The original subroutine was a coding of the AM0-2 model from J. B. Minster. Changes have

been made to represent NNR-NUVEL1A model (DeMets et al., 1994).

SUBROUTINE ABSMO NUVEL(PSIT,T0,X0,Y0,Z0,T,X,Y,Z)

C

C ABSMO NUVEL takes a site specified by its initial coordinates

C X0,Y0,Z0 at time T0, and computes its updated positions X,Y,Z

C at time T, based on the geological "absolute".

C

C

C

C Original author: J.B. Minster, Science Horizons.

C DFA: Revised by Don Argus, Northwestern University

C DFA: uses absolute model NNR-NUVEL1

C

C Transcribed from USNO Circular 167 "Project Merit Standards"

C by Tony Mallama with slight modification to the documentation

C and code.

C

C Times are given in years, e.g. 1988.0 for Jan 1, 1988.

C

C PSIT is the four character abbreviation for the plate name,

C if PSIT is not recognized then the new positions are returned

C as zero.

C

IMPLICIT NONE

CHARACTER*4 PSIT,PNM(16)

REAL*8 OMX(16),OMY(16),OMZ(16)

REAL*8 X0,Y0,Z0

REAL*8 X,Y,Z,T,T0

INTEGER*2 IPSIT,I

C

C DFA: NNR-NUVEL1A

C

DATA (PNM(I), OMX(I), OMY(I), OMZ(I),

& I = 1,16)

& /'PCFC', -0.001510, 0.004840, -0.009970,

& 'AFRC', 0.000891, -0.003099, 0.003922,

& 'ANTA', -0.000821, -0.001701, 0.003706,

& 'ARAB', 0.006685, -0.000521, 0.006760,

& 'AUST', 0.007839, 0.005124, 0.006282,

& 'CARB', -0.000178, -0.003385, 0.001581,

& 'COCO', -0.010425, -0.021605, 0.010925,

& 'EURA', -0.000981, -0.002395, 0.003153,
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& 'INDI', 0.006670, 0.000040, 0.006790,

& 'NAZC', -0.001532, -0.008577, 0.009609,

& 'NOAM', 0.000258, -0.003599, -0.000153,

& 'SOAM', -0.001038, -0.001515, -0.000870,

& 'JUFU', 0.005200, 0.008610, -0.005820,

& 'PHIL', 0.010090, -0.007160, -0.009670,

& 'RIVR', -0.009390, -0.030960, -0.012050,

& 'SCOT', -0.000410, -0.002660, -0.001270/

C

C

C Initialize things properly

C

IPSIT = -1

X = 0.0D0

Y = 0.0D0

Z = 0.0D0

C

C Look up the plate in the list.

C

DO 20 I = 1,16

20 IF (PSIT .EQ. PNM(I)) IPSIT = I

C

C If plate name is not recognized return the new plate position

C as zero.

C

IF (IPSIT .EQ. -1) RETURN

C

C Compute the new coordinates

C

X = X0 + (OMY(IPSIT)*Z0 - OMZ(IPSIT)*Y0) * (T-T0)/1.0D+6

Y = Y0 + (OMZ(IPSIT)*X0 - OMX(IPSIT)*Z0) * (T-T0)/1.0D+6

Z = Z0 + (OMX(IPSIT)*Y0 - OMY(IPSIT)*X0) * (T-T0)/1.0D+6

C

C Finish up

C

RETURN

END
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CHAPTER 4 NUMERICAL STANDARDS

Table 4.1 listing numerical standards is organized into 5 columns: item, value, uncertainty,

reference, comment. All values are given in terms of SI units (Le Syst�eme International d'Unit�es (SI),
1991). The SI second, the basic unit of the TT time scale, is speci�cally assumed. If the TDB time

scale is used, new units of time, tTDB , and length, `TDB , are implicitly de�ned by the expressions

(Seidelmann and Fukushima, 1992)

tTDB = t=(1� LB); and

`TDB = `=(1� LB);

where t and ` are the SI units and LB is a derived constant given in Table 4.1. Chapter 11 provides

further details on the transformations between time scales.

The 1976 IAU System of Astronomical Constants (Astronomical Almanac for the Year 1984) is
adopted for all astronomical constants which do not appear in Table 4.1.
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Table 4.1. IERS Numerical Standards.
ITEM VALUE UNCERTAINTY REF. COMMENTS

c 299792458ms�1 De�ning [2] Speed of light

LB 1:550519748� 10�8 4� 10�17 [4] Average value of

d(TCB)/d(TT)-1

LC 1:4808268457� 10�8 1� 10�17 [4] Average value of

d(TCB)/d(TCG)-1

LG 6:96929023� 10�10 1� 10�17 [1] Average value of

d(TCG)/d(TT)-1

W0 62636856:85m2s�2 1:0m2s�2 [1] Potential of the geoid

�A 499:0047838061s 0:00000002s [7] Astronomical unit in seconds

c�A 149597870691m 30m [7] Astronomical unit in meters

P 5029".0966=century 0".3=century [8] General precession in

longitude at J2000.0

�0 84381".412 0".005 [7] Obliquity of the ecliptic

at J2000.0

aE 6378136:49m 0:10m [1] Equatorial radius of the Earth

1=f 298:25642 0:00001 [1] Flattening factor of the Earth

J2� 1:0826359� 10�3 1:0� 10�10 [1] Dynamical form-factor

of the Earth

G 6:67259� 10�11m3kg�1s�2 8:54� 10�15m3kg�1s�2 [3] Constant of gravitation

GM� 3:986004418� 1014m3s�2 8� 105m3s�2 [1] Geocentric gravitational

constant

� 0:0123000345 5� 10�10 [7] Moon-Earth mass ratio

! 7:292115� 10�5rads�1 variable [1] Nominal mean angular

velocity of the Earth

GM� 1:327124� 1020m3s�2 [6] Heliocentric gravitational

constant

ge 9:780327ms�2 1� 10�6ms�2 [1] Mean equatorial gravity

R0 = GM�=W0 6363672:461m 0:1m [1] Geopotential scale factor

Some geodetic parameters are a�ected by tidal variations (see Chapter 3). The values given in

Table 4.1 are in the zero-tide system so that they correspond to a realistic time-averaged crust. This

is done to be consistent with XVIII IAG General Assembly Resolution 16.
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CHAPTER 5 TRANSFORMATION BETWEEN THE CELESTIAL AND TERRES-

TRIAL SYSTEMS

The coordinate transformation to be used from the TRS to the CRS at the date t of the obser-

vation can be written as:

[CRS] = PN(t)R(t)W (t) [TRS];

where PN(t), R(t) and W (t) are the transformation matrices arising from the motion of the Celestial

Ephemeris Pole (CEP) in the CRS, from the rotation of the Earth around the axis of the CEP, and

from polar motion respectively.

Two equivalent options can be used. These two options have been shown to be consistent within

�0:05 milliseconds of arc (mas) both theoretically (Capitaine, 1990) and numerically using existing

astrometric data (Capitaine and Chollet, 1991) or simulated data over two centuries (Capitaine and

Gontier, 1991).

Option 1, corresponding to the classical procedure, makes use of the equinox for realizing the

intermediate reference frame of date t. It uses apparent Greenwich Sidereal Time in the transformation

matrix R(t) and the classical precession and nutation parameters in the transformation matrix PN(t),

Option 2 makes use of the Conventional Ephemeris Origin (CEO) originally referred to as the

nonrotating origin (Guinot, 1979) to realize the intermediate reference frame of date t: it uses the

stellar angle (from the origin in the TRS to the CEO in the CRS) in the transformation matrix

R(t) and the two coordinates of the Celestial Ephemeris Pole in the CRS (Capitaine, 1990) in the

transformation matrix PN(t). This leads to very simple expressions of the partial derivatives of

observables with respect to polar coordinates, UT1, and celestial pole o�sets.

The following sections give the details of these two options as well as the standard expressions

necessary to obtain the numerical values of the relevant parameters at the date of the observation.

Subroutines for options 1 and 2 of the coordinate transformation from the TRS to the CRS are available

from the Central Bureau on request together with the development of the parameters.

The expressions of the precession and nutation quantities have been developed originally as

functions of barycentric dynamical time (TDB) de�ned by IAU recommendations of 1976 and 1979.

In 1991 the IAU adopted de�nitions of other time scales. See Chapter 11 for the relationships among

these time scales. The parameter t is de�ned by

t = (TT� 2000 January 1d 12h TT) in days=36525:

This de�nition is consistent with Resolution C7 passed at the 1994 Hague General Assembly of the

IAU which recommends that J2000.0 be de�ned at the geocenter and at the date 2000.0 January 1.5

TT = Julian Date 2451545.0 TT. In the following, R1, R2 and R3 denote direct rotations about the

axes 1, 2 and 3 of the coordinate frame.

Coordinate Transformation Referred to the Equinox

Option 1 uses the form of the coordinate transformation

[CRS] = PN 0(t)R0(t)W 0(t) [TRS]; (1)
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in which the three fundamental components are (Mueller, 1969)

W 0(t) = R1(yp) �R2(xp);

xp and yp being the \polar coordinates" of the CEP in the TRS;

R0(t) = R3(�GST);

GST being Greenwich True Sidereal Time at date t, including both the e�ect of Earth rotation and

the accumulated precession and nutation in right ascension; and

PN 0(t) = [P ][N ];

with [P ] = R3(�A) �R2(��A) �R3(zA)

for the transformation matrix corresponding to the precession between the reference epoch and the

date t,

[N ] = R1(��A) �R3(� ) �R1(�A +��)

for the transformation matrix corresponding to the nutation at date t.

Standard values of the parameters to be used in form (1) of the transformation are explained

below.

The standard polar coordinates to be used for the parameters xp and yp (if not estimated from

the observations) are those published by the IERS. Apparent Greenwich Sidereal Time GST at the

date t of the observation, must be derived from the following expressions:

(i) the relationship between Greenwich Mean Sidereal Time (GMST) and Universal Time as

given by Aoki et al. (1982):

GMST0h UT1 = 6h 41m 50s.54841+ 8640184s.812866T 0u + 0s.093104T 02u � 6s.2� 10�6T 03u ;

with T 0u = d0u=36525, d
0
u being the number of days elapsed since 2000 January 1, 12h UT1, taking on

values �0:5, �1:5, ...,

(ii) the interval of GMST from 0h UT1 to the hour of the observation in UT1,

GMST = GMST0h UT1 + r[(UT1�UTC) + UTC];

where r is the ratio of universal to sidereal time as given by Aoki et al. (1982),

r = 1:002737909350795+ 5:9006� 10�11T 0u � 5:9� 10�15T 02u

and the UT1-UTC value to be used (if not estimated from the observations) is the IERS value.

(iii) accumulated precession and nutation in right ascension (Aoki and Kinoshita, 1983),

GST = GMST+ � cos �A + 000.00264 sin
 + 000.000063 sin2
;

where 
 is the mean longitude of the ascending node of the lunar orbit. The last two terms have not

been included in the IERS Standards previously. They should not be included in (iii) until 1 January
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1997 when their use will begin. This date is chosen to minimize any discontinuity in UT1. The e�ect

of these terms on the estimation of UT1 has been described by Capitaine and Gontier (1993).

The numerical expression for the precession quantities �A, �A, zA and �A have been given by

Lieske et al. (1977) as functions of two time parameters t and T (the last parameter representing

Julian centuries from J2000.0 to an arbitrary epoch). The simpli�ed expressions when the arbitrary

epoch is chosen to be J2000.0 (i.e. T = 0) are

�A = 230600.2181t+ 000.30188t2 + 000.017998t3,

�A = 200400.3109t� 000.42665t2 � 000.041833t3,

zA = 230600.2181t+ 100.09468t2 + 000.018203t3,

�A = 8438100.448� 4600.8150t� 000.00059t2 + 000.001813t3.

The nutation quantities � and �� to be used are the nutation angles in longitude and obliquity.

For observations requiring values of the nutation angles with an accuracy of �1 mas, it is nec-

essary to add (if those quantities are not estimated from the observations) the IERS published values

(observed or predicted) for the \celestial pole o�sets" (i.e. corrections dpsi and deps).

The IAU 1980 Theory of Nutation

The IAU 1980 Theory of Nutation (Seidelmann, 1982; Wahr, 1981) is based on a modi�cation

of a rigid Earth theory published by Kinoshita (1977) and on the geophysical model 1066A of Gilbert

and Dziewonski (1975). It therefore includes the e�ects of a solid inner core and a liquid outer core and

a \distribution of elastic parameters inferred from a large set of seismological data." The constants

de�ning the theory are given in Table 5.1.

VLBI and LLR observations have shown that there are de�ciencies in the IAU 1976 Precession

and in the IAU 1980 Theory of Nutation. However, these models are kept as part of the IERS Standards

and the observed di�erences (�� and ���, equivalent to dpsi and deps in the IERS Bulletins) with

respect to the conventional celestial pole position de�ned by the models are monitored and reported

by the IERS as \celestial pole o�sets." Using these o�sets the corrected nutation is given by

� = � (IAU 1980) + �� ;

and

�� = ��(IAU1980) + ���:

This is practically equivalent to replacing N with the rotation described by Lieske (1991),

~N = RNIAU:

where

R =

0
@ 1 ��� cos �t ��� sin �t
�� cos �t 1 ���

�� sin �t ��� 1

1
A ;
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�t = �A + ��, and NIAU represents the IAU 1980 Theory of Nutation according to which

� =

106X
i=1

(Ai +A0it) sin(ARGUMENT); �� =

106X
i=1

(Bi +B0
it) cos(ARGUMENT):

Here

ARGUMENT =
X

NiFi;

the Ni; (i = 1; � � � ; 5) being integers multiplying the Fundamental Arguments Fi of nutation theory,

namely,

F1 � l = Mean Anomaly of the Moon

= 134�.96340251+ 171791592300.2178t+ 3100.8792t2 + 000.051635t3 � 000.00024470t4,

F2 � l0 = Mean Anomaly of the Sun

= 357�.52910918+ 12959658100.0481t� 000.5532t2 + 000.000136t3 � 000.00001149t4,

F3 � F = L� 


= 93�.27209062+ 173952726200.8478t� 1200.7512t2 � 000.001037t3 + 000.00000417t4,

F4 � D = Mean Elongation of the Moon from the Sun

= 297�.85019547+ 160296160100.2090t� 600.3706t2 + 000.006593t3 � 000.00003169t4,

F5 � 
 = Mean Longitude of the Ascending Node of the Moon

= 125�.04455501� 696289000.2665t+ 700.4722t2 + 000.007702t3 � 000.00005939t4,

where t is measured in Julian Centuries of 36525 days of 86400 seconds of Dynamical Time since

J2000.0 and where 1r = 360� = 129600000.0 (Simon et al., 1994). L is the Mean Longitude of the

Moon.

The reader is cautioned that there may be an ambiguity in the assignment of the set of �ve

multipliers Nj to any particular term of the nutation series. This ambiguity is illustrated, and a

convention for unique assignment of multipliers for prograde and retrograde circular nutations is

presented, in a note at the end of this chapter.

Table 5.1. IAU 1980 Theory of Nutation in longitude � and obliquity ��, referred to the mean

equator and equinox of date, with t measured in Julian centuries from epoch J2000.0. The signs of

the fundamental arguments, periods, and coe�cients may di�er from the original publication. These

have been changed to be consistent with other portions of this chapter.

� =

106X
i=1

(Ai +A0it) sin(ARGUMENT); �� =

106X
i=1

(Bi +B0
it) cos(ARGUMENT):
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MULTIPLIERS OF PERIOD LONGITUDE OBLIQUITY

(000.0001) (000.0001)
l l0 F D 
 (days) Ai A0

i Bi B0
i

0 0 0 0 1 -6798.4 -171996 -174.2 92025 8.9

0 0 2 -2 2 182.6 -13187 -1.6 5736 -3.1

0 0 2 0 2 13.7 -2274 -0.2 977 -0.5

0 0 0 0 2 -3399.2 2062 0.2 -895 0.5

0 -1 0 0 0 -365.3 -1426 3.4 54 -0.1

1 0 0 0 0 27.6 712 0.1 -7 0.0

0 1 2 -2 2 121.7 -517 1.2 224 -0.6

0 0 2 0 1 13.6 -386 -0.4 200 0.0

1 0 2 0 2 9.1 -301 0.0 129 -0.1

0 -1 2 -2 2 365.2 217 -0.5 -95 0.3

-1 0 0 2 0 31.8 158 0.0 -1 0.0

0 0 2 -2 1 177.8 129 0.1 -70 0.0

-1 0 2 0 2 27.1 123 0.0 -53 0.0

1 0 0 0 1 27.7 63 0.1 -33 0.0

0 0 0 2 0 14.8 63 0.0 -2 0.0

-1 0 2 2 2 9.6 -59 0.0 26 0.0

-1 0 0 0 1 -27.4 -58 -0.1 32 0.0

1 0 2 0 1 9.1 -51 0.0 27 0.0

-2 0 0 2 0 -205.9 -48 0.0 1 0.0

-2 0 2 0 1 1305.5 46 0.0 -24 0.0

0 0 2 2 2 7.1 -38 0.0 16 0.0

2 0 2 0 2 6.9 -31 0.0 13 0.0

2 0 0 0 0 13.8 29 0.0 -1 0.0

1 0 2 -2 2 23.9 29 0.0 -12 0.0

0 0 2 0 0 13.6 26 0.0 -1 0.0

0 0 2 -2 0 173.3 -22 0.0 0 0.0

-1 0 2 0 1 27.0 21 0.0 -10 0.0

0 2 0 0 0 182.6 17 -0.1 0 0.0

0 2 2 -2 2 91.3 -16 0.1 7 0.0

-1 0 0 2 1 32.0 16 0.0 -8 0.0

0 1 0 0 1 386.0 -15 0.0 9 0.0

1 0 0 -2 1 -31.7 -13 0.0 7 0.0

0 -1 0 0 1 -346.6 -12 0.0 6 0.0

2 0 -2 0 0 -1095.2 11 0.0 0 0.0

-1 0 2 2 1 9.5 -10 0.0 5 0.0

1 0 2 2 2 5.6 -8 0.0 3 0.0

0 -1 2 0 2 14.2 -7 0.0 3 0.0

0 0 2 2 1 7.1 -7 0.0 3 0.0

1 1 0 -2 0 -34.8 -7 0.0 0 0.0

0 1 2 0 2 13.2 7 0.0 -3 0.0

-2 0 0 2 1 -199.8 -6 0.0 3 0.0

0 0 0 2 1 14.8 -6 0.0 3 0.0

2 0 2 -2 2 12.8 6 0.0 -3 0.0

1 0 0 2 0 9.6 6 0.0 0 0.0

1 0 2 -2 1 23.9 6 0.0 -3 0.0

0 0 0 -2 1 -14.7 -5 0.0 3 0.0

0 -1 2 -2 1 346.6 -5 0.0 3 0.0

2 0 2 0 1 6.9 -5 0.0 3 0.0

1 -1 0 0 0 29.8 5 0.0 0 0.0

1 0 0 -1 0 411.8 -4 0.0 0 0.0

0 0 0 1 0 29.5 -4 0.0 0 0.0

0 1 0 -2 0 -15.4 -4 0.0 0 0.0

1 0 -2 0 0 -26.9 4 0.0 0 0.0

2 0 0 -2 1 212.3 4 0.0 -2 0.0

0 1 2 -2 1 119.6 4 0.0 -2 0.0

1 1 0 0 0 25.6 -3 0.0 0 0.0

1 -1 0 -1 0 -3232.9 -3 0.0 0 0.0

-1 -1 2 2 2 9.8 -3 0.0 1 0.0

0 -1 2 2 2 7.2 -3 0.0 1 0.0

1 -1 2 0 2 9.4 -3 0.0 1 0.0

3 0 2 0 2 5.5 -3 0.0 1 0.0

-2 0 2 0 2 1615.7 -3 0.0 1 0.0

1 0 2 0 0 9.1 3 0.0 0 0.0

-1 0 2 4 2 5.8 -2 0.0 1 0.0

1 0 0 0 2 27.8 -2 0.0 1 0.0

-1 0 2 -2 1 -32.6 -2 0.0 1 0.0
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0 -2 2 -2 1 6786.3 -2 0.0 1 0.0

-2 0 0 0 1 -13.7 -2 0.0 1 0.0

2 0 0 0 1 13.8 2 0.0 -1 0.0

3 0 0 0 0 9.2 2 0.0 0 0.0

1 1 2 0 2 8.9 2 0.0 -1 0.0

0 0 2 1 2 9.3 2 0.0 -1 0.0

1 0 0 2 1 9.6 -1 0.0 0 0.0

1 0 2 2 1 5.6 -1 0.0 1 0.0

1 1 0 -2 1 -34.7 -1 0.0 0 0.0

0 1 0 2 0 14.2 -1 0.0 0 0.0

0 1 2 -2 0 117.5 -1 0.0 0 0.0

0 1 -2 2 0 -329.8 -1 0.0 0 0.0

1 0 -2 2 0 23.8 -1 0.0 0 0.0

1 0 -2 -2 0 -9.5 -1 0.0 0 0.0

1 0 2 -2 0 32.8 -1 0.0 0 0.0

1 0 0 -4 0 -10.1 -1 0.0 0 0.0

2 0 0 -4 0 -15.9 -1 0.0 0 0.0

0 0 2 4 2 4.8 -1 0.0 0 0.0

0 0 2 -1 2 25.4 -1 0.0 0 0.0

-2 0 2 4 2 7.3 -1 0.0 1 0.0

2 0 2 2 2 4.7 -1 0.0 0 0.0

0 -1 2 0 1 14.2 -1 0.0 0 0.0

0 0 -2 0 1 -13.6 -1 0.0 0 0.0

0 0 4 -2 2 12.7 1 0.0 0 0.0

0 1 0 0 2 409.2 1 0.0 0 0.0

1 1 2 -2 2 22.5 1 0.0 -1 0.0

3 0 2 -2 2 8.7 1 0.0 0 0.0

-2 0 2 2 2 14.6 1 0.0 -1 0.0

-1 0 0 0 2 -27.3 1 0.0 -1 0.0

0 0 -2 2 1 -169.0 1 0.0 0 0.0

0 1 2 0 1 13.1 1 0.0 0 0.0

-1 0 4 0 2 9.1 1 0.0 0 0.0

2 1 0 -2 0 131.7 1 0.0 0 0.0

2 0 0 2 0 7.1 1 0.0 0 0.0

2 0 2 -2 1 12.8 1 0.0 -1 0.0

2 0 -2 0 1 -943.2 1 0.0 0 0.0

1 -1 0 -2 0 -29.3 1 0.0 0 0.0

-1 0 0 1 1 -388.3 1 0.0 0 0.0

-1 -1 0 2 1 35.0 1 0.0 0 0.0

0 1 0 1 0 27.3 1 0.0 0 0.0

�0 = 23�2602100.448

sin �0 = 0:39777716

The IERS 1996 Theory of Precession/Nutation

At the request of the IERS, T. Herring (1996) has analyzed the most recent VLBI and LLR

data for geophysical parameters required to adjust the rigid Earth theory of nutation to the non-

rigid theory. The non-rigid Earth theory coe�cients resulting from this procedure are shown in Table

5.2. Table 5.3 contains the planetary nutation terms and the necessary planetary arguments. These

coe�cients are meant to be used for prediction purposes and by those requiring accurate a priori
estimates of nutation. They are not meant to replace the IAU Theory. The IERS will continue to

publish observed estimates of the corrections to the IAU 1976 Precession and the IAU 1980 Theory of

Nutation in its publications.

The use of the IERS 1996 Theory of nutation must also be associated with the use of improved

numerical values for the precession rate of the equator in longitude and obliquity:

� A = �0:295700=c and �!A = �0:022700=c
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Table 5.2. IERS 1996 series for nutation in longitude � and obliquity ��, referred to the mean

equator and equinox of date, with t measured in Julian centuries from epoch J2000.0. The signs of

the fundamental arguments, periods, and coe�cients may di�er from the original publication. These

have been changed to be consistent with other portions of this chapter.

� =

263X
i=1

(Ai + A0
it) sin(ARGUMENT)+ A00

i cos(ARGUMENT);

�� =

263X
i=1

(Bi + B0
it) cos(ARGUMENT) + B00

i sin(ARGUMENT):

MULTIPLIERS OF PERIOD LONGITUDE OBLIQUITY

(0:001mas) (0:001mas)
l l0 F D 
 (days) Ai A0

i Bi B0
i A00

i B00
i

0 0 0 0 1 -6798.38 -17206277 -17419 9205356 886 3645 1553

0 0 2 -2 2 182.62 -1317014 -156 573058 -306 -1400 -464

0 0 2 0 2 13.66 -227720 -23 97864 -48 269 136

0 0 0 0 2 -3399.18 207429 21 -89747 47 -71 -29

0 -1 0 0 0 -365.26 -147538 364 7388 -19 1121 198

0 1 2 -2 2 121.75 -51687 123 22440 -68 -54 -18

1 0 0 0 0 27.55 71118 7 -687 0 -94 39

0 0 2 0 1 13.63 -38752 -37 20076 2 34 32

1 0 2 0 2 9.13 -30137 -4 12896 -6 77 35

0 -1 2 -2 2 365.22 21583 -49 -9591 30 6 12

0 0 2 -2 1 177.84 12820 14 -6897 -1 18 4

-1 0 2 0 2 27.09 12353 1 -5334 3 2 0

-1 0 0 2 0 31.81 15699 1 -127 0 -18 9

1 0 0 0 1 27.67 6314 6 -3323 0 3 -1

-1 0 0 0 1 -27.44 -5797 -6 3141 0 -19 -8

-1 0 2 2 2 9.56 -5965 -1 2554 -1 14 7

1 0 2 0 1 9.12 -5163 -4 2635 0 12 8

-2 0 2 0 1 1305.48 4590 5 -2424 -1 1 1

0 0 0 2 0 14.77 6336 1 -125 0 -15 3

0 0 2 2 2 7.10 -3854 0 1643 0 15 6

-2 0 0 2 0 -205.89 -4774 0 48 0 -2 -3

2 0 2 0 2 6.86 -3102 0 1323 -1 12 5

1 0 2 -2 2 23.94 2863 0 -1235 1 0 0

-1 0 2 0 1 26.98 2044 2 -1076 0 1 0

2 0 0 0 0 13.78 2923 0 -62 0 -8 1

0 0 2 0 0 13.61 2585 0 -56 0 -7 1

0 1 0 0 1 386.00 -1406 -3 857 0 8 -4

-1 0 0 2 1 31.96 1517 1 -801 0 1 0

0 2 2 -2 2 91.31 -1578 7 685 -4 -2 -1

0 0 -2 2 0 -173.31 2178 0 -15 0 1 1

1 0 0 -2 1 -31.66 -1286 -1 694 0 -4 -2

0 -1 0 0 1 -346.64 -1269 1 642 1 6 2

-1 0 2 2 1 9.54 -1022 -1 522 0 2 1

0 -2 0 0 0 -182.63 -1671 8 14 0 -1 -1

1 0 2 2 2 5.64 -768 0 325 0 4 2

-2 0 2 0 0 1095.18 -1102 0 10 0 -1 0

0 1 2 0 2 13.17 757 -2 -326 -2 -1 0

0 0 2 2 1 7.09 -664 -1 335 -1 2 1

0 -1 2 0 2 14.19 -714 2 307 2 1 0

0 0 0 2 1 14.80 -631 -1 327 0 0 0

1 0 2 -2 1 23.86 580 1 -307 0 0 0

2 0 2 -2 2 12.81 643 0 -277 0 -1 0

-2 0 0 2 1 -199.84 -579 -1 304 0 -1 0

2 0 2 0 1 6.85 -533 0 269 0 2 1

0 -1 2 -2 1 346.60 -477 -1 271 -1 0 0

0 0 0 -2 1 -14.73 -493 -1 272 0 -2 -1

-1 -1 0 2 0 34.85 735 0 -5 0 -1 0

2 0 0 -2 1 212.32 405 0 -220 0 1 0

1 0 0 2 0 9.61 657 0 -20 0 -2 0

0 1 2 -2 1 119.61 361 0 -194 0 1 0
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1 -1 0 0 0 29.80 471 0 -4 0 -1 0

-2 0 2 0 2 1615.76 -311 0 131 0 0 0

3 0 2 0 2 5.49 -289 0 124 0 2 1

0 -1 0 2 0 15.39 435 0 -9 0 -1 0

1 -1 2 0 2 9.37 -287 0 123 0 1 0

-1 -1 2 2 2 9.81 -282 0 122 0 1 0

0 0 0 1 0 29.53 -422 0 3 0 1 0

-1 0 2 0 0 26.88 -404 0 4 0 1 0

0 -1 2 2 2 7.24 -264 0 114 0 1 0

-2 0 0 0 1 -13.75 -228 0 126 0 -1 0

1 1 2 0 2 8.91 246 0 -106 0 -1 0

2 0 0 0 1 13.81 218 0 -114 0 0 0

-1 1 0 1 0 3232.87 327 0 -1 0 0 0

1 1 0 0 0 25.62 -338 0 4 0 0 0

1 0 2 0 0 9.11 334 0 -11 0 -1 0

-1 0 2 -2 1 -32.61 -199 0 107 0 -1 0

1 0 0 0 2 27.78 -197 0 85 0 0 0

-1 0 0 1 0 -411.78 405 0 -55 0 -35 -14

0 0 2 1 2 9.34 165 0 -72 0 0 0

-1 0 2 4 2 5.80 -151 0 66 0 1 0

0 -2 2 -2 1 6786.31 -130 0 69 0 0 0

-1 1 0 1 1 6164.17 132 0 -68 0 0 0

1 0 2 2 1 5.64 -133 0 66 0 1 0

-2 0 2 2 2 14.63 139 0 -60 0 0 0

-1 0 0 0 2 -27.33 139 0 -60 0 0 0

1 1 2 -2 2 22.47 128 0 -55 0 0 0

-2 0 2 4 2 7.35 -121 0 52 0 0 0

-1 0 4 0 2 9.06 115 0 -49 0 0 0

2 0 2 -2 1 12.79 101 0 -54 0 0 0

2 0 2 2 2 4.68 -108 0 47 0 1 0

1 0 0 2 1 9.63 -95 0 49 0 0 0

3 0 0 0 0 9.18 157 0 -5 0 -1 0

3 0 2 -2 2 8.75 94 0 -40 0 0 0

0 0 4 -2 2 12.66 91 0 -39 0 0 0

0 0 -2 2 1 -169.00 87 0 -44 0 0 0

0 1 2 0 1 13.14 81 0 -42 0 0 0

0 0 2 -2 3 187.66 123 0 -20 0 0 0

-1 0 0 4 0 10.08 133 0 -4 0 0 0

2 0 -2 0 1 -943.23 71 0 -38 0 0 0

2 0 0 -4 0 -15.91 -128 0 1 0 0 0

-1 -1 0 2 1 35.03 75 0 -39 0 0 0

-2 -1 0 2 0 -131.67 -115 0 1 0 0 0

0 -1 2 0 1 14.16 -66 0 35 0 0 0

-1 0 0 1 1 -388.27 101 0 -49 0 -3 -1

0 0 -2 0 1 -13.58 -68 0 36 0 0 0

0 1 0 0 2 409.23 69 0 -33 0 -1 0

0 0 2 -1 2 25.42 -74 0 31 0 0 0

0 0 2 4 2 4.79 -69 0 29 0 0 0

1 1 0 -2 1 -34.67 -61 0 32 0 0 0

-1 1 0 2 0 29.26 -94 0 0 0 0 0

1 -1 2 2 2 5.73 -59 0 25 0 0 0

1 -1 0 0 1 29.93 51 0 -27 0 0 0

0 1 -2 2 0 -329.79 -90 0 3 0 0 0

3 0 2 0 1 5.49 -50 0 25 0 0 0

-1 1 2 2 2 9.31 56 0 -24 0 0 0

0 1 2 2 2 6.96 54 0 -22 0 0 0

-1 0 0 -2 1 -9.60 -50 0 27 0 0 0

-1 1 0 1 2 66079.30 -52 0 23 0 0 0

0 -1 2 2 1 7.23 -44 0 24 0 0 0

1 0 2 -4 1 -38.74 -47 0 24 0 0 0

-1 0 -2 2 0 -23.77 77 0 0 0 0 0

-1 -1 2 2 1 9.80 -46 0 24 0 0 0

0 -1 0 0 2 -329.82 59 0 -25 0 0 0

2 -1 2 0 2 6.99 -48 0 21 0 0 0

1 -1 2 0 1 9.35 -42 0 22 0 0 0

0 0 0 2 2 14.83 -46 0 20 0 0 0

0 1 0 2 0 14.19 -67 0 0 0 0 0

-1 1 2 0 2 25.22 47 0 -20 0 0 0

0 3 2 -2 2 73.05 -44 0 19 0 0 0

0 -1 -2 2 0 -117.54 66 0 0 0 0 0
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0 0 0 1 1 29.66 -37 0 20 0 0 0

1 0 -2 -2 0 -9.53 -64 0 1 0 0 0

1 1 2 0 1 8.90 36 0 -18 0 0 0

2 1 2 0 2 6.73 40 0 -17 0 0 0

0 1 0 1 0 27.32 57 0 0 0 0 0

1 0 -2 2 0 32.76 -58 0 0 0 0 0

1 1 0 0 1 25.72 -34 0 19 0 0 0

-2 0 0 -2 0 -7.13 -59 0 1 0 0 0

-1 0 0 2 2 32.11 -38 0 17 0 0 0

0 0 0 -1 1 -29.40 33 0 -18 0 0 0

0 1 0 -2 1 -15.35 -33 0 18 0 0 0

-1 0 2 -2 2 -32.45 36 0 -16 0 0 0

-1 1 0 0 1 -29.67 -31 0 17 0 0 0

1 0 2 1 2 6.98 33 0 -14 0 0 0

0 0 0 -4 0 -7.38 -48 0 1 0 0 0

0 0 2 1 1 9.33 27 0 -14 0 0 0

1 0 0 -2 2 -31.52 32 0 -14 0 0 0

1 0 2 -1 2 13.22 -33 0 13 0 0 0

1 -1 0 2 0 9.87 48 0 0 0 0 0

-1 0 2 4 1 5.80 -26 0 13 0 0 0

0 0 -2 -2 0 -7.08 -41 0 1 0 0 0

1 0 -2 0 1 -26.77 27 0 -14 0 0 0

-1 0 2 -1 1 313.04 -23 0 14 0 0 0

1 1 2 -2 1 22.40 23 0 -12 0 0 0

4 0 2 0 2 4.58 -26 0 11 0 0 0

0 1 2 1 2 9.11 -24 0 10 0 0 0

-2 0 -2 0 0 -6.85 -36 0 1 0 0 0

2 1 2 -2 2 12.38 25 0 -10 0 0 0

2 -1 0 0 0 14.32 38 0 0 0 0 0

-1 -1 0 0 1 -25.53 21 0 -12 0 0 0

-2 0 2 2 1 14.60 22 0 -11 0 0 0

0 0 0 0 3 -2266.12 -22 0 10 0 0 0

1 0 4 -2 2 8.68 23 0 -9 0 0 0

2 0 2 2 1 4.68 -19 0 10 0 0 0

-2 0 2 4 1 7.34 -20 0 10 0 0 0

0 1 0 2 1 14.22 18 0 -9 0 0 0

1 0 0 1 0 14.25 -33 0 0 0 0 0

-1 0 0 4 1 10.10 -18 0 9 0 0 0

-1 0 4 0 1 9.05 19 0 -9 0 0 0

0 0 2 -3 2 -35.23 -20 0 8 0 0 0

0 0 4 0 2 6.82 19 0 -8 0 0 0

2 1 0 0 0 13.28 -28 0 0 0 0 0

0 0 2 -4 1 -16.10 -16 0 9 0 0 0

-1 -1 2 4 2 5.90 -17 0 7 0 0 0

-1 -2 0 2 0 38.52 27 0 0 0 0 0

0 0 0 4 1 7.39 -16 0 7 0 0 0

0 -1 0 2 1 15.42 -14 0 7 0 0 0

1 0 2 4 2 4.08 -16 0 7 0 0 0

-2 0 0 2 2 -194.13 18 0 -8 0 0 0

-2 2 0 2 0 1616.44 -22 0 0 0 0 0

-2 -1 2 0 1 -507.16 9 0 -5 0 0 0

-3 0 0 0 1 -9.17 -14 0 7 0 0 0

0 0 2 0 3 13.69 20 0 0 0 0 0

0 0 2 4 1 4.79 -12 0 6 0 0 0

0 0 4 -2 1 12.64 12 0 -7 0 0 0

0 -2 0 2 0 16.06 21 0 0 0 0 0

1 0 0 -1 1 438.33 17 0 -5 0 -3 1

1 1 2 2 2 5.56 15 0 -6 0 0 0

3 0 2 -2 1 8.73 12 0 -7 0 0 0

-1 -1 2 0 2 29.26 -16 0 6 0 0 0

-2 -1 0 2 1 -129.17 -13 0 7 0 0 0

0 0 0 -2 2 -14.70 13 0 -5 0 0 0

0 -2 2 2 2 7.38 -13 0 5 0 0 0

1 0 0 -4 1 -10.07 -12 0 6 0 0 0

-1 1 0 2 1 29.39 -10 0 6 0 0 0

-2 0 0 4 1 15.94 11 0 -6 0 0 0

0 0 2 -1 1 25.33 -10 0 5 0 0 0

0 2 0 0 1 187.67 -9 0 5 0 0 0

0 2 2 -2 1 90.10 8 0 -5 0 0 0

2 0 0 2 1 7.13 -9 0 5 0 0 0
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2 0 0 -4 1 -15.87 -11 0 5 0 0 0

2 0 2 -4 1 95.42 10 0 -5 0 0 0

-1 0 -2 0 1 -9.10 -10 0 5 0 0 0

-1 1 2 0 1 25.13 9 0 -5 0 0 0

-1 1 2 -2 1 -35.80 -11 0 5 0 0 0

-1 -1 0 4 0 10.37 15 0 0 0 0 0

-3 0 0 4 0 37.63 16 0 0 0 0 0

3 0 2 2 2 4.00 -14 0 0 0 0 0

2 -1 0 -2 0 471.89 -9 0 1 0 -1 0

0 2 -2 2 0 -3396.16 -9 0 0 0 0 0

0 -1 2 4 2 4.86 -9 0 0 0 0 0

0 -1 2 -1 2 27.32 9 0 0 0 0 0

1 1 0 2 0 9.37 -10 0 0 0 0 0

2 0 0 -2 2 219.17 -11 0 0 0 0 0

2 -1 2 2 2 4.74 -9 0 0 0 0 0

4 0 0 0 0 6.89 9 0 0 0 0 0

4 0 2 -2 2 6.64 12 0 0 0 0 0

-1 0 0 3 0 15.31 -10 0 0 0 0 0

-1 0 4 -2 2 23.43 -9 0 0 0 0 0

-1 -2 2 2 2 10.08 -9 0 0 0 0 0

-2 -1 0 4 0 16.63 12 0 0 0 0 0

-2 -1 2 4 2 7.50 -12 0 0 0 0 0

0 1 2 2 1 6.95 7 0 0 0 0 0

0 2 2 0 2 12.71 7 0 0 0 0 0

0 -2 2 0 2 14.77 -8 0 0 0 0 0

1 0 0 4 0 5.82 8 0 0 0 0 0

1 0 2 2 0 5.63 8 0 0 0 0 0

1 0 2 -4 2 -38.52 7 0 0 0 0 0

1 -1 2 2 1 5.73 -8 0 0 0 0 0

1 -1 2 -2 2 25.62 -7 0 0 0 0 0

1 -2 0 0 0 32.45 8 0 0 0 0 0

2 0 0 0 2 13.83 -8 0 0 0 0 0

2 1 0 -2 1 134.27 8 0 0 0 0 0

3 0 0 0 1 9.20 7 0 0 0 0 0

-1 0 2 1 2 14.13 8 0 0 0 0 0

-1 0 2 3 2 7.22 8 0 0 0 0 0

-1 0 -2 4 0 38.96 -7 0 0 0 0 0

-1 1 2 2 1 9.30 7 0 0 0 0 0

-1 2 0 2 0 27.09 -8 0 0 0 0 0

-1 -1 2 -1 1 2189.73 7 0 0 0 0 0

-2 0 2 -2 1 -14.93 -8 0 0 0 0 0

-2 0 4 0 2 13.49 -7 0 0 0 0 0

-2 0 -2 2 0 -12.76 8 0 0 0 0 0

-2 1 2 0 1 285.41 9 0 0 0 0 0

-3 0 2 0 1 -28.15 -8 0 0 0 0 0

0 1 0 1 1 27.43 5 0 0 0 0 0

0 -1 0 4 0 7.53 6 0 0 0 0 0

0 -1 0 -2 1 -14.16 5 0 0 0 0 0

0 -2 0 0 1 -177.85 -6 0 0 0 0 0

1 0 2 1 1 6.97 5 0 0 0 0 0

1 0 2 -3 2 126.51 -6 0 0 0 0 0

1 0 -2 1 0 -299.26 -7 0 0 0 0 0

1 1 0 1 0 13.72 5 0 0 0 0 0

1 -1 0 -2 1 -29.14 6 0 0 0 0 0

2 0 2 -1 2 8.93 -6 0 0 0 0 0

2 1 2 0 1 6.73 5 0 0 0 0 0

2 -1 2 0 1 6.98 -6 0 0 0 0 0

2 -1 2 -2 2 13.28 5 0 0 0 0 0

3 0 0 2 0 5.66 5 0 0 0 0 0

3 -1 2 0 2 5.58 -5 0 0 0 0 0

-1 -1 2 0 1 29.14 -6 0 0 0 0 0

-2 0 0 0 2 -13.72 6 0 0 0 0 0

-2 0 0 3 0 34.48 -5 0 0 0 0 0

-2 0 0 -2 1 -7.12 -5 0 0 0 0 0

-2 0 2 2 0 14.57 -6 0 0 0 0 0

-2 -1 2 0 0 -548.04 -5 0 0 0 0 0

-2 -1 2 2 2 15.24 6 0 0 0 0 0

0 0 1 0 0 27.21 0 0 0 0 8 0

0 0 1 0 1 27.32 0 0 0 0 -16 -14

-1 0 1 0 0 2190.35 0 0 0 0 33 0
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-1 0 1 0 1 3231.51 0 0 0 0 -105 -89

-1 0 1 0 2 6159.22 0 0 0 0 36 18

-1 0 1 0 3 65514.10 0 0 0 0 -6 0

Table 5.3. IERS 1996 Series for planetary nutation in longitude � and obliquity ��, referred to

the mean equator and equinox of date, with t measured in Julian centuries from epoch J2000.0. The

signs of the fundamental arguments, periods, and coe�cients may di�er from the original publication.

These have been changed to be consistent with other portions of this chapter.

� =

112X
i=1

Ai sin(ARGUMENT) +A0i cos(ARGUMENT);

�� =

112X
i=1

Bi sin(ARGUMENT) +B0
i cos(ARGUMENT):

MULTIPLIERS OF PERIOD LONGITUDE OBLIQUITY

(0:001mas) (0:001mas)
lV e lE lMa lJ lSa pa D F l 
 (days) Ai A0

i Bi B0
i

0 2 0 -2 0 0 2 0 -2 1 100171.17 28 0 0 -15

18 -16 0 0 0 0 0 0 -1 0 99728.92 23 10 0 0

8 -12 0 0 0 0 1 -1 0 -1 88074.16 -120 -60 32 -64

0 0 2 0 0 0 1 -1 0 0 38036.19 27 -8 0 0

0 1 -2 0 0 0 0 0 0 -1 -37884.54 46 43 -23 25

3 -4 0 0 0 0 1 0 -1 0 -34988.76 0 13 0 0

5 -6 0 0 0 0 2 -2 0 0 18185.76 0 23 0 0

6 -8 0 0 0 0 2 0 -2 0 -17494.38 8 -2 0 0

0 8 -15 0 0 0 0 0 0 0 14765.98 5 -2 0 0

0 -2 0 3 0 0 -2 0 2 1 -13630.86 9 -2 0 -5

0 2 0 -3 0 0 2 0 -2 0 -13562.72 -35 -6 0 0

0 1 0 -1 0 0 1 0 -1 0 12732.58 -5 0 0 0

0 1 0 1 0 0 1 -1 0 0 11960.41 -2 -8 0 0

0 0 0 1 0 0 0 0 0 1 11945.37 2 -7 0 0

0 1 0 0 1 0 1 -1 0 -1 10771.42 -17 -8 4 -9

0 0 0 0 1 0 0 0 0 0 10759.23 1 6 0 0

0 0 0 0 1 1 0 0 0 0 10746.94 5 0 0 0

0 -1 0 0 1 0 -1 1 0 1 10747.06 -7 -1 0 0

8 -13 0 0 0 0 0 0 0 1 -7372.72 5 7 0 0

18 -16 0 0 0 0 0 0 -1 1 -7295.69 -7 -3 0 0

0 0 0 -2 5 0 0 0 0 1 -6944.70 8 2 0 0

0 4 -8 3 0 0 0 0 0 -1 6870.05 -8 -30 16 -4

0 4 -8 3 0 0 0 0 0 1 -6728.13 -8 29 16 4

0 0 0 2 -5 0 0 0 0 1 -6658.05 -7 2 0 0

0 2 0 -2 0 0 2 0 -2 0 6366.29 -44 0 0 0

-18 16 0 0 0 0 0 0 1 1 -6364.50 6 -3 0 0

-8 13 0 0 0 0 0 0 0 1 -6307.01 -4 6 0 0

0 0 2 0 0 0 1 -1 0 -1 5767.51 -27 -8 4 -15

0 1 -2 0 0 0 0 0 0 0 -5764.01 -46 44 0 0

0 -2 2 0 0 0 -1 1 0 1 5760.51 0 -5 0 0

0 0 0 0 -2 -1 0 0 0 0 -5376.54 -5 -10 6 -3

0 -1 0 0 2 0 -1 1 0 1 5376.57 -5 -11 -6 3

0 0 0 0 2 2 0 0 0 0 5373.47 -12 0 0 5

5 -6 0 0 0 0 2 -2 0 -1 4948.47 2 44 -23 0

0 2 0 -3 0 0 2 0 -2 1 -4528.45 -5 0 0 0

0 -1 0 -1 0 0 -1 1 0 1 -4334.57 -5 19 10 3

0 0 0 1 0 -1 0 0 0 0 4334.58 2 6 0 0

0 0 0 1 0 0 0 0 0 0 4332.59 -8 25 0 0

0 0 0 1 0 1 0 0 0 0 4330.60 0 5 0 0

0 -1 0 1 0 0 -1 1 0 1 4330.61 0 -5 0 0

3 -3 0 0 0 0 2 0 -2 0 3561.67 -14 0 0 0

0 -2 0 2 0 0 -2 0 2 1 -3287.62 5 0 0 0

3 -5 0 0 0 0 0 0 0 0 -2959.21 -22 7 0 0

3 -5 0 0 0 -1 0 0 0 0 -2958.28 -1 -7 3 -1
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3 -5 0 0 0 -2 0 0 0 0 -2957.35 211 0 0 96

0 2 -4 0 0 0 0 0 0 0 -2882.00 -8 14 0 0

0 2 -4 0 0 -2 0 0 0 0 -2880.24 5 0 0 0

5 -8 0 0 0 -2 0 0 0 0 2863.89 0 -26 13 0

5 -7 0 0 0 0 1 -1 0 -1 2863.01 -14 -3 1 -7

0 0 0 -2 0 -1 0 0 0 0 -2165.80 -4 -27 12 -2

0 1 0 -2 0 0 1 -1 0 -1 -2165.80 3 14 -8 1

0 0 0 2 0 2 0 0 0 0 2165.30 -116 0 0 51

-3 3 0 0 0 0 -2 2 0 1 2060.87 12 0 0 -6

0 -2 0 2 0 0 -2 2 0 1 1642.24 5 0 0 0

2 -3 0 0 0 0 0 0 0 0 1454.94 0 63 0 0

0 0 0 3 0 2 0 0 0 0 1443.75 -12 0 0 5

1 -2 0 0 0 0 0 0 0 0 -975.38 0 -9 0 0

0 2 -3 0 0 0 0 0 0 0 901.99 -8 5 0 0

0 1 -1 0 0 0 0 0 0 0 779.94 -6 0 0 0

4 -7 0 0 0 -2 0 0 0 0 -733.47 0 6 0 0

4 -6 0 0 0 -2 0 0 0 0 727.58 -52 0 0 -23

4 -6 0 0 0 -1 0 0 0 0 727.52 0 9 -5 1

1 -1 0 0 0 0 0 0 0 0 583.92 153 0 0 0

1 -1 0 0 0 1 0 0 0 0 583.89 0 -6 -5 -1

0 1 0 -3 0 -2 0 0 0 0 488.96 -11 0 0 -5

2 -4 0 0 0 -1 0 0 0 0 -487.66 0 -8 0 0

2 -4 0 0 0 -2 0 0 0 0 -487.64 47 0 0 20

0 1 0 -2 0 0 0 0 0 0 439.33 -18 27 0 0

0 3 -4 0 0 0 0 0 0 0 418.27 -8 5 0 0

3 -4 0 0 0 0 0 0 0 0 416.69 0 29 0 0

0 1 0 -1 0 0 0 0 0 0 398.88 -123 -3 0 0

0 2 -2 0 0 0 0 0 0 0 389.97 -38 0 0 0

0 1 0 0 -1 0 0 0 0 0 378.09 -8 0 0 0

0 0 2 0 0 2 0 0 0 0 343.46 -7 0 0 0

0 1 0 1 0 2 0 0 0 0 336.83 -25 0 0 11

3 -6 0 0 0 -2 0 0 0 0 -325.10 0 -5 0 0

5 -7 0 0 0 -2 0 0 0 0 323.94 -21 0 0 -9

0 1 0 2 0 2 0 0 0 0 312.54 -3 -5 0 0

2 -2 0 0 0 -1 0 0 0 0 291.97 0 5 0 0

2 -2 0 0 0 0 0 0 0 0 291.96 -60 0 0 0

1 -3 0 0 0 -2 0 0 0 0 -265.73 -11 0 0 -5

1 -3 0 0 0 -1 0 0 0 0 -265.73 0 -5 0 0

0 2 0 -3 0 0 0 0 0 0 209.07 8 2 0 0

2 -5 0 0 0 -2 0 0 0 0 -208.83 0 -13 6 0

6 -8 0 0 0 -2 0 0 0 0 208.35 -12 0 0 -5

0 2 0 -2 0 0 0 0 0 0 199.44 39 0 0 0

3 -3 0 0 0 0 0 0 0 0 194.64 10 0 0 0

3 -3 0 0 0 2 0 0 0 0 194.63 5 -2 0 0

0 -2 0 1 0 -2 0 0 0 0 -190.66 15 3 -1 7

0 3 -2 0 0 2 0 0 0 0 188.60 8 -7 0 0

8 -15 0 0 0 -2 0 0 0 0 -183.00 -6 -10 4 -3

0 6 -8 3 0 2 0 0 0 0 182.67 12 -42 -18 -5

0 2 0 0 0 2 0 0 0 0 182.62 -9 0 0 0

0 -2 8 -3 0 2 0 0 0 0 182.57 -12 42 18 5

-8 11 0 0 0 -2 0 0 0 0 -182.24 6 10 -4 13

0 1 2 0 0 2 0 0 0 0 177.01 -8 -7 0 0

0 2 0 1 0 2 0 0 0 0 175.23 17 -1 0 -7

3 -7 0 0 0 -2 0 0 0 0 -172.01 7 -2 0 0

2 -1 0 0 0 2 0 0 0 0 162.26 0 -17 -8 0

7 -9 0 0 0 -2 0 0 0 0 153.56 -7 0 0 0

4 -4 0 0 0 0 0 0 0 0 145.98 11 0 0 0

1 1 0 0 0 2 0 0 0 0 139.11 -30 0 0 13

0 3 0 -2 0 2 0 0 0 0 129.00 7 -9 -4 -3

3 -2 0 0 0 2 0 0 0 0 126.97 0 -11 -5 0

0 3 0 -1 0 2 0 0 0 0 125.27 52 2 0 -22

0 4 -2 0 0 2 0 0 0 0 124.38 14 0 0 -6

8 -10 0 0 0 -2 0 0 0 0 121.59 -5 0 0 0

5 -5 0 0 0 0 0 0 0 0 116.78 7 0 0 0

2 0 0 0 0 2 0 0 0 0 112.35 39 0 0 -17

0 4 0 -2 0 2 0 0 0 0 95.33 -18 0 0 8

-18 16 0 0 0 0 0 -2 1 -2 -13.66 13 6 -3 5

-18 16 0 0 0 0 0 2 1 2 13.66 13 -6 -3 -5
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lV e = 181�.979800853+ 58517�.8156748� t

lE = 100�.466448494+ 35999�.3728521� t

lMa = 355�.433274605+ 19140�.299314� t

lJu = 34�.351483900+ 3034�.90567464� t

lSa = 50�.0774713998+ 1222�.11379404� t

pa = 1�.39697137214� t+ 0�.0003086� t2

The multipliers of the fundamental arguments of nutation theory

Each of the lunisolar terms in the nutation series is characterized by a set of �ve integers Nj

which determines the ARGUMENT for the term as a linear combination of the �ve Fundamental

Arguments Fj , namely the Delaunay variables (`; `0; F;D;
): ARGUMENT =
P5

j=1NjFj � ~N � ~F ;
where ~N is the �ve-vector composed of the values (N1; � � � ; N5) which characterize the term, and ~F is

the �ve-vector (F1; � � � ; F5). The Fj are functions of time, and the angular frequency of the nutation

described by the term is given by

! �
d(ARGUMENT)

dt
:

The frequency thus de�ned is positive for most terms, and negative for some. Planetary nutation

terms di�er from the above only in that ARGUMENT =
P10

j=1N
0
jF

0
j as noted in Table 5.3.

Over time scales involved in nutation studies, the frequency ! is e�ectively time-independent,

and one may write, for the sth term in the nutation series,

ARGUMENT = !st + �s:

Di�erent tables of nutations in longitude and obliquity do not necessarily assign the same set

of multipliers Nj to a particular term in the nutation series. Compare, for instance, the 31.8 day

term in Table 5.1 wherein ~N = (�1; 0; 0; 2; 0) with the same term in Seidelmann (1982) where the

assignment is ~N = (1; 0; 0;�2; 0). The di�erences in the assignments arises from the fact that the

replacement ~Nj ! � ~Nj accompanied by reversal of the sign of the coe�cient of sin(ARGUMENTj)

in the series for � and �� leaves these series unchanged. This freedom has led to some confusion in

the assignment of multipliers of the Delaunay arguments for amplitudes of retrograde and prograde

circular nutations.

The nutations in longitude and obliquity at a given frequency !s may be viewed as the superpo-

sition of a pair of prograde and retrograde circular nutations whose frequencies have the same absolute

value, j!sj, but with opposite signs. These circular nutation terms may be written as

Apro
s e�iqs(!st+�s) and Aret

s eiqs(!st+�s);

where qs is the sign of !s:

qs!s = j!sj:
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With the convention that the exponential factor involving the frequency � is to be written as e�i�t,

one sees from the above expressions that the frequency of the prograde nutation, !pros = (qs!s) � j!sj,
is positive, and that of the retrograde nutation is negative (!rets = �j!sj).

Now, given the vector ~N of multipliers of the fundamental arguments for the nutations in longi-

tude and obliquity of frequency !s, one can choose multipliers ~N
(pro) and ~N (ret) for the corresponding

prograde and retrograde nutations in such a manner as to ensure that

!pros � ~Npro �
d~F

dt
= j!sj; !rets � ~Nret �

d~F

dt
= �j!sj:

This is accomplished by making the assignments

~Npro = qs ~N ; ~Nret = �qs ~N;

a practice that will be adhered to in this work. Note that ~N (pro) and ~N (ret) are una�ected by whether
~N or � ~N is used to label the nutations in longitude and obliquity, because on switching from one to

the other, the sign of !s also is switched simultaneously.

Conversion to Prograde and Retrograde Nutation Amplitudes

With the convention for the time dependence of the circular nutation amplitudes as stated above,

the amplitudes of prograde and retrograde circular nutations are written as

Apro
s = Apro ip

s � iApro op
s ;

Aret
s = Aret ip

s � iAret op
s ;

where Apro ip
s and Apro op

s are the in-phase and out-of-phase parts of the prograde nutation with angular

frequency j!sj as de�ned in the foregoing section, and Aret ip
s and Aret op

s are the in-phase and out-of-

phase parts of the retrograde nutation with angular frequency (�j!sj). These amplitudes are related
to the coe�cients in longitude and obliquity through the following equations (see Defraigne et al.,

1995):

Apro ip
s = �

1

2

�
��ips � qs� 

ip
s sin �0

�
;

Aret ip
s = �

1

2

�
��ips + qs� 

ip
s sin �0

�
;

Apro op
s =

1

2
(qs��

op
s +� ops sin �0) ;

Aret op
s = �

1

2
(qs��

op
s �� ops sin �0) :

��ips and ��ops are the in-phase (cosine) and out-of-phase (sine) parts of the nutation in obliquity for

a nutation of frequency !s; � 
ip
s and � ops are the in-phase (sine) and out-of-phase (cosine) parts of

the nutation in longitude for the same nutation.

The relations stated above are valid when the convention regarding the time dependence as

stated in the previous section is followed, i.e., when the time dependence of the prograde amplitude

is e�ij!sjt and that of the retrograde amplitude is eij!sjt. However the opposite convention is often
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used in the literature. The amplitudes to be employed in such a case are the complex conjugates of

those given above, i.e., (Apro ip
s + iApro op

s ) goes together with eij!sjt for the prograde nutation and

(Aret ip
s + iAret op

s ) with e�ij!sjt for the retrograde nutation. Since the real parts are to be eventually

taken, switching between mutually complex conjugates versions does not a�ect the results.

Coordinate Transformation Referred to the Nonrotating Origin

Option 2 uses form (2) of the coordinate transformation from the TRS to the CRS

[CRS] = PN 00(t)R00(t)W 00(t)[TRS]; (2)

where the three fundamental components of (2) are given below (Capitaine, 1990)

W 00(t) = R3(�s0) �R1(yp) �R2(xp);

xp and yp being the \polar coordinates" of the CEP in the TRS and s0 the accumulated displacement

of the terrestrial origin on the true equator due to polar motion. The use of the quantity s0 (which is

neglected in the classical form (1)) provides an exact realization of the \instantaneous prime meridian."

R00(t) = R3(��);

� being the stellar angle at date t due to the Earth's angle of rotation,

PN 00(t) = R3(�E) �R2(�d) �R3(E) �R3(S);

E and d being such that the coordinates of the CEP in the CRS are X = sin d cosE, Y = sin d sinE,

Z = cosd and S being the accumulated rotation (between the epoch and the date t) of the celestial

CEO on the true equator due to the celestial motion of the CEP. PN 00(t) can be given in an equivalent

form involving directly X and Y (to which all the observations of a celestial object from the Earth

are actually sensitive) as:

PN 00(t) = Q1 =

0
@ 1� aX2 �aXY X

�aXY 1� aY 2 Y

�X �Y 1� a(X2 + Y 2)

1
A �R3(s);

with a = 1=(1+cosd), which can also be written, with su�cient accuracy as a = 1=2+1=8(X2+Y 2).

The standard values of the parameters to be used in the form (2) of the transformation are

detailed below.

The standard pole coordinates to be used for the parameters xp and yp (if not estimated from

the observations) are those published by the IERS. The quantity s0 (of the order of 0.1 mas/cy) is:

s0 = 0:0015(a2c=1:2 + a2a)t;

ac and aa being the average amplitudes (in arc seconds) of the Chandlerian and annual wobbles,

respectively in the period considered (Capitaine et al., 1986).

The stellar angle is obtained by the use of the conventional relationship between the stellar angle

�, the hour angle of the CEO and UT1 as given by Capitaine et al., (1986),

�(Tu) = 2�(0:779057273264+ 1:00273781191135448Tu� 36525);
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where Tu = (Julian UT1 date - 2451545.0)/36525, and

UT1 = UTC + (UT1-UTC), or equivalently

�(Tu) = 2�(UT1 Julian day number elapsed since 2451545:0+ 0:779057273264

+0:00273781191135448Tu� 36525);

the quantity UT1-UTC to be used (if not estimated from the observations) being the IERS value.

The celestial coordinates X and Y of the CEP to be used for consistency with the IAU 1980

theory of nutation are the standard values as derived from the series given in Table 5.4. These

developments of the celestial polar coordinates have been derived (Capitaine, 1990) from the previous

standard expressions for precession and nutation with a consistency of 5 � 10�5 sec. of arc after

a century; such consistency has been numerically checked over two centuries (Gontier, 1990). For

observations requiring values of the nutation angles with a milliarcsecond accuracy, it is necessary to

add (if those quantities are not estimated from the observations) the IERS published values (observed

or predicted) for the \celestial pole o�sets" (i.e. corrections dX = � sin �0 and dY = ��).

For consistency with the IERS 1996 series for nutation as given by Tables 5.2 and 5.3, it is

necessary to use the following expressions for X and Y (Capitaine, 1990):

X = sin! sin ;

Y = � sin �0 cos! + cos �0 sin! cos ;

where �0 is the obliquity of the ecliptic at J2000, ! is the inclination of the true equator of date on the

�xed ecliptic of epoch and  is the longitude, on the ecliptic of epoch of the node of the true equator

of date on the �xed ecliptic of epoch; these quantities are such that:

! = !A +��1;  =  A + � 1;

where  A and !A are the precession quantities in longitude and obliquity (Lieske et al. 1977) referred

to the ecliptic of epoch and � 1, ��1 are the nutation angles in longitude and obliquity referred to

the ecliptic of epoch. � 1, ��1 can be obtained with an accuracy better than one microarcsecond

after one century from the nutation angles � , �� in longitude and obliquity referred to the ecliptic

of date, following Aoki and Kinoshita (1983) by:

� 1 =
(� sin �A cos�A ��� sin�A)

sin !A
;

��1 = � sin �A sin�A + �� cos�A;

!A and �A being the precession quantities in obliquity referred to ecliptic of epoch and ecliptic of date

respectively and �A the precession quantity for planetary precession along the equator (Lieske et al.

1977).

The standard value of s compatible with the IAU 1980 Theory of Nutation and the Lieske et al.
(1977) precession can be derived with an accuracy of 5� 10�5

00
after a century (Capitaine, 1990) from

the following numerical development and the numerical values of X and Y (Table 5.3),

s = �XY=2 + 000.00385t� 000.07259t3 � 000.00264 sin
� 000.00006 sin 2


+000.00074t2 sin 
 + 000.00006t2 sin 2(F �D +
)

35



Table 5.4 Series for the celestial coordinates X and Y of the CEP referred to the mean equator and

equinox of epoch J2000.0, with t measured in Julian centuries from epoch J2000.0. The terms following

the dotted line are identical in Tables 5.1 and 5.4. The signs of the fundamental arguments, periods,

and coe�cients may di�er from the original publication. These have been changed to be consistent

with other portions of this chapter.

X= 200400.3109t� 000.42665t2 � 000.198656t3 + 000.0000140t4

+000.00006t2 cos
 + sin �0f
P
[(Ai + A0it) sin(ARGUMENT) +A00i t cos(ARGUMENT)]g

+000.00204t2 sin 
 + 000.00016t2 sin 2(F �D +
);

Y = �000.00013� 2200.40992t2 + 000.001836t3 + 000.0011130t4

+
P
[(Bi + B0

it) cos(ARGUMENT) +B00
i t sin(ARGUMENT)]

�000.00231t2 cos
� 000.00014t2 cos 2(F �D + 
)

MULTIPLIERS OF PERIOD LONGITUDE

�
000.0001

�
OBLIQUITY

�
000.0001

�
l l0 F D 
 (days) Ai A0

i A00
i Bi B0

i B00
i

0 0 0 0 1 -6798.4 -171996 -84.2 5173.2 92025 8.9 1529.9

0 0 2 -2 2 182.6 -13187 5.3 322.2 5736 -3.1 117.3

0 0 2 0 2 13.7 -2274 1.0 54.8 977 -0.5 20.2

0 0 0 0 2 -3399.2 2053.2 -1.0 -50.5 -893.7 0.5 -18.3

0 -1 0 0 0 -365.3 -1426 4.3 3.0 54 -0.1 12.7

1 0 0 0 0 27.6 712 0.1 0.0 -7 0.0 -6.3

0 1 2 -2 2 121.7 -517 1.5 12.6 224 -0.6 4.6

0 0 2 0 1 13.6 -386 -0.4 11.3 200 0.0 3.4

1 0 2 0 2 9.1 -301 0.0 7.3 129 -0.1 2.7

0 -1 2 -2 2 365.2 217 -0.5 -5.3 -95 0.3 -1.9

-1 0 0 2 0 31.8 158 0.0 0.0 -1 0.0 -1.4

0 0 2 -2 1 177.8 129 0.1 -4.0 -70 0.0 -1.2

-1 0 2 0 2 27.1 123 0.0 -3.0 -53 0.0 -1.1

1 0 0 0 1 27.7 63 0.1 -1.8 -33 0.0 -0.6

0 0 0 2 0 14.8 63 0.0 0.0 -2 0.0 -0.6

-1 0 2 2 2 9.6 -59 0.0 1.5 26 0.0 0.5

-1 0 0 0 1 -27.4 -58 -0.1 1.8 32 0.0 0.5

1 0 2 0 1 9.1 -51 0.0 1.5 27 0.0 0.5

-2 0 0 2 0 -205.9 -48 0.0 0.0 1 0.0 0.0

-2 0 2 0 1 1305.5 46 0.0 -1.3 -24 0.0 0.0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
0 0 2 2 2 7.1 -38 0.0 16 0.0

2 0 2 0 2 6.9 -31 0.0 13 0.0

2 0 0 0 0 13.8 29 0.0 -1 0.0

1 0 2 -2 2 23.9 29 0.0 -12 0.0

0 0 2 0 0 13.6 26 0.0 -1 0.0

0 0 2 -2 0 173.3 -22 0.0 0 0.0

-1 0 2 0 1 27.0 21 0.0 -10 0.0

0 2 0 0 0 182.6 17 -0.1 0 0.0

0 2 2 -2 2 91.3 -16 0.1 7 0.0

1 0 0 2 1 32.0 16 0.0 -8 0.0

0 1 0 0 1 386.0 -15 0.0 9 0.0

1 0 0 -2 1 -31.7 -13 0.0 7 0.0

0 -1 0 0 1 -346.6 -12 0.0 6 0.0

2 0 -2 0 0 -1095.2 11 0.0 0 0.0

-1 0 2 2 1 9.5 -10 0.0 5 0.0

1 0 2 2 2 5.6 -8 0.0 3 0.0

0 -1 2 0 2 14.2 -7 0.0 3 0.0

0 0 2 2 1 7.1 -7 0.0 3 0.0

1 1 0 -2 0 -34.8 -7 0.0 0 0.0

0 1 2 0 2 13.2 7 0.0 -3 0.0

-2 0 0 2 1 -199.8 -6 0.0 3 0.0

0 0 0 2 1 14.8 -6 0.0 3 0.0

2 0 2 -2 2 12.8 6 0.0 -3 0.0

1 0 0 2 0 9.6 6 0.0 0 0.0

1 0 2 -2 1 23.9 6 0.0 -3 0.0

0 0 0 -2 1 -14.7 -5 0.0 3 0.0

0 -1 2 -2 1 346.6 -5 0.0 3 0.0
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2 0 2 0 1 6.9 -5 0.0 3 0.0

1 -1 0 0 0 29.8 5 0.0 0 0.0

1 0 0 -1 0 411.8 -4 0.0 0 0.0

0 0 0 1 0 29.5 -4 0.0 0 0.0

0 1 0 -2 0 -15.4 -4 0.0 0 0.0

1 0 -2 0 0 -26.9 4 0.0 0 0.0

2 0 0 -2 1 212.3 4 0.0 -2 0.0

0 1 2 -2 1 119.6 4 0.0 -2 0.0

1 1 0 0 0 25.6 -3 0.0 0 0.0

1 -1 0 -1 0 -3232.9 -3 0.0 0 0.0

-1 -1 2 2 2 9.8 -3 0.0 1 0.0

0 -1 2 2 2 7.2 -3 0.0 1 0.0

1 -1 2 0 2 9.4 -3 0.0 1 0.0

3 0 2 0 2 5.5 -3 0.0 1 0.0

-2 0 2 0 2 1615.7 -3 0.0 1 0.0

1 0 2 0 0 9.1 3 0.0 0 0.0

-1 0 2 4 2 5.8 -2 0.0 1 0.0

1 0 0 0 2 27.8 -2 0.0 1 0.0

-1 0 2 -2 1 -32.6 -2 0.0 1 0.0

0 -2 2 -2 1 6786.3 -2 0.0 1 0.0

-2 0 0 0 1 -13.7 -2 0.0 1 0.0

2 0 0 0 1 13.8 2 0.0 -1 0.0

3 0 0 0 0 9.2 2 0.0 0 0.0

1 1 2 0 2 8.9 2 0.0 -1 0.0

0 0 2 1 2 9.3 2 0.0 -1 0.0

1 0 0 2 1 9.6 -1 0.0 0 0.0

1 0 2 2 1 5.6 -1 0.0 1 0.0

1 1 0 -2 1 -34.7 -1 0.0 0 0.0

0 1 0 2 0 14.2 -1 0.0 0 0.0

0 1 2 -2 0 117.5 -1 0.0 0 0.0

0 1 -2 2 0 -329.8 -1 0.0 0 0.0

1 0 -2 2 0 32.8 -1 0.0 0 0.0

1 0 -2 -2 0 -9.5 -1 0.0 0 0.0

1 0 2 -2 0 32.8 -1 0.0 0 0.0

1 0 0 -4 0 -10.1 -1 0.0 0 0.0

2 0 0 -4 0 -15.9 -1 0.0 0 0.0

0 0 2 4 2 4.8 -1 0.0 0 0.0

0 0 2 -1 2 25.4 -1 0.0 0 0.0

-2 0 2 4 2 7.3 -1 0.0 1 0.0

2 0 2 2 2 4.7 -1 0.0 0 0.0

0 -1 2 0 1 14.2 -1 0.0 0 0.0

0 0 -2 0 1 -13.6 -1 0.0 0 0.0

0 0 4 -2 2 12.7 1 0.0 0 0.0

0 1 0 0 2 409.2 1 0.0 0 0.0

1 1 2 -2 2 22.5 1 0.0 -1 0.0

3 0 2 -2 2 8.7 1 0.0 0 0.0

-2 0 2 2 2 14.6 1 0.0 -1 0.0

-1 0 0 0 2 -27.3 1 0.0 -1 0.0

0 0 -2 2 1 -169.0 1 0.0 0 0.0

0 1 2 0 1 13.1 1 0.0 0 0.0

-1 0 4 0 2 9.1 1 0.0 0 0.0

2 1 0 -2 0 131.7 1 0.0 0 0.0

2 0 0 2 0 7.1 1 0.0 0 0.0

2 0 2 -2 1 12.8 1 0.0 -1 0.0

2 0 -2 0 1 -943.2 1 0.0 0 0.0

1 -1 0 -2 0 -29.3 1 0.0 0 0.0

-1 0 0 1 1 -388.3 1 0.0 0 0.0

-1 -1 0 2 1 35.0 1 0.0 0 0.0

0 1 0 1 0 27.3 1 0.0 0 0.0

0 0 2 -2 3 177.8 -1.2 0.0 0 0.0

Geodesic Nutation

Fukushima (1991) has pointed out that, if extreme precision is required, the e�ect of geodesic

nutation must be taken into account. For Option (1) this would require a correction in longitude of

� g = �000.000153 sin l0 � 000.000002 sin2l0;
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where l0 is the mean anomaly of the Sun. For Option (2) it would require a correction to X of

�Xg = (�000.0000609 sin l0 � 000.0000008 sin2l0) sin �0:

In both cases, the correction would be added to the uncorrected determination of  or X .
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CHAPTER 6 GEOPOTENTIAL

The recommended geopotential �eld is the JGM-3 model (Tapley et al., 1995). The GM� and ae
values reported with JGM-3 (398600.4415km3/s2 and 6378136.3 m) should be used as scale parameters

with the geopotential coe�cients. The recommended GM� = 398600.4418 should be used with the

two-body term when working with SI units (398600.4415 or 398600.4356 should be used by those

still working with TDT or TDB units, respectively). Although the JGM-3 model is given with terms

through degree and order 70, only terms through degree and order twenty are required for Lageos.

Values for the C21 and S21 coe�cients are included in the JGM-3 model. The C21 and S21
coe�cients describe the position of the Earth's �gure axis. When averaged over many years, the �gure

axis should closely coincide with the observed position of the rotation pole averaged over the same

time period. Any di�erences between the mean �gure and mean rotation pole averaged would be due

to long-period 
uid motions in the atmosphere, oceans, or Earth's 
uid core (Wahr, 1987, 1990). At

present, there is no independent evidence that such motions are important. The JGM-3 values for C21
and S21 give a mean �gure axis that corresponds to the mean pole position recommended in Chapter

3 Terrestrial Reference Frame.

This choice for C21 and S21 is realized as follows. First, to use the geopotential coe�cients to

solve for a satellite orbit, it is necessary to rotate from the Earth-�xed frame, where the coe�cients are

pertinent, to an inertial frame, where the satellite motion is computed. This transformation between

frames should include polar motion. We assume the polar motion parameters used are relative to the

IERS Reference Pole. If �x and �y are the angular displacements of the Terrestrial Reference Frame

described in Chapter 3 relative to the IERS Reference Pole, then the values

�C21 =
p
3�x �C20,

�S21 = �
p
3�y �C20,

where �x = 0:223� 10�6 radians (equivalent to 0.046 arcsec) and �y = 1:425� 10�6 radians (equivalent

to 0.294 arcsec) (Nerem et al., 1994) are those used in the geopotential model, so that the mean �gure

axis coincides with the pole described in Chapter 3. This gives normalized coe�cients of

�C21(IERS) = �0:187� 10�9,

�S21(IERS) = 1:195� 10�9.

JGM-3 is available via ftp at ftp.csr.utexas.edu on the directory pub/grav in �le JGM3.GEO.Z. It can

also be accessed by World Wide Web at http://www.csr.utexas.edu by clicking the \library of data

�les" selection.

E�ect of Solid Earth Tides

The changes induced by the solid Earth tides in the free space potential are most conveniently

modeled as variations in the standard geopotential coe�cients Cnm and Snm (Eanes et al., 1983). The
contributions �Cnm and �Snm from the tides are expressible in terms of the k Love number. The

e�ects of ellipticity and rotation of the Earth on tidal deformations necessitates the use, in general, of

three k parameters, k
(0)
nm and k

(�)
nm , to characterize the changes produced in the free space potential by
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tides of spherical harmonic degree and order (nm) (Wahr, 1981). Within the diurnal tidal band, for

(mn) = (21), these parameters have a strong frequency dependence due to the Nearly Diurnal Free

Wobble resonance. Anelasticity of the mantle causes k
(0)
nm and k

(�)
nm to acquire small imaginary parts

(re
ecting a phase lag in the deformational response of the Earth to tidal forces), and also gives rise

to a further variation with frequency which is particularly pronounced within the long period band.

Though modeling of anelasticity at the periods relevant to tidal phenomena (8 hours to 18.6 years)

is not yet de�nitive, it is clear that the magnitudes of the contributions from anelasticity cannot be

ignored (see below). Consequently the anelastic Earth model is recommended for use in precise data

analysis.

The degree 2 tides produce time dependent changes in C2m and S2m, through k
(0)
2m, which can

exceed 10�8 in magnitude. They also produce changes exceeding a cuto� of 3 � 10�12 in C4m and

S4m through k
(+)
2m . (The direct contributions of the degree 4 tidal potential to these coe�cients are

negligible.) The only other changes exceeding this cuto� are in C3m and S3m, produced by the degree

3 part of the tide generating potential.

The computation of the tidal contributions to the geopotential coe�cients is most e�ciently

done by a two-step procedure. In Step 1, the (2m) part of the tidal potential is evaluated in the

time domain for each m using lunar and solar ephemerides, and the corresponding changes �C2m and

�S2m are computed using frequency independent nominal values k2m for the respective k
(0)
2m. The

contributions of the degree 3 tides to C3m and S3m through k
(0)
3m and also those of the degree 2 tides

to C4m and S4m through k
(+)
2m may be computed by a similar procedure; they are at the level of 10�11.

Step 2 corrects for the deviations of the k
(0)
21 of several of the constituent tides of the diurnal

band from the constant nominal value k21 assumed for this band in the �rst step. Similar corrections

need to be applied to a few of the constituents of the other two bands also.

With frequency-independent values knm (Step 1), changes induced by the (nm) part of the tide

generating potential in the normalized geopotential coe�cients having the same (nm) are given in the

time domain by

� �Cnm � i��Snm =
knm

2n+ 1

3X
j=2

GMj

GM�

�Re

rj

�n+1
�Pnm(sin �j)e

�im�j (1)

(with Sn0 = 0), where

knm = nominal degree Love number for degree n and order m,

Re = equatorial radius of the Earth,

GM� = gravitational parameter for the Earth,

GMj = gravitational parameter for the Moon (j = 2) and Sun (j = 3),

rj = distance from geocenter to Moon or Sun,
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�j = body �xed geocentric latitude of Moon or Sun,

�j = body �xed east longitude (from Greenwich) of Moon or Sun,

and �Pnm is the normalized associated Legendre function related to the classical (unnormalized) one

by

�Pnm = NnmPnm; (2a)

where

Nnm =

s
(n�m)!(2n+ 1)(2� �om)

(n+m)!
: (2b)

Correspondingly, the normalized geopotential coe�cients ( �Cnm; �Snm) are related to the unnormalized

coe�cients (Cnm; Snm) by

Cnm = Nnm
�Cnm; Snm = Nnm

�Snm: (3)

Equation (1) yields � �Cnm and ��Snm for both n = 2 and n = 3 for all m, apart from the

corrections for frequency dependence to be evaluated in Step 2. (The particular case (nm) = (20) needs

special consideration, however, because it includes a time-independent part which will be discussed

below in the section on the permanent tide.)

One further computation to be done in Step 1 is that of the changes in the degree 4 coe�cients

produced by the degree 2 tides. They are given by

� �C4m � i��S4m =
k
(+)
2m

5

3X
j=2

GMj

GM�

�Re

rj

�3
�P2m(sin �j)e

�im�j ; (m = 0; 1; 2); (4)

which has the same form as Equation (1) for n = 2 except for the replacement of k2m by k
(+)
2m .

The parameter values for the computations of Step 1 are given in Table 6.1. The choice of these

nominal values (which are complex for m = 1 and m = 2 in the anelastic case) has been made so as

to minimize the number of terms for which corrections will have to be applied in Step 2. The nominal

value for m = 0 has to be chosen real because there is no closed expression for the contribution to
�C20 from the imaginary part of k

(0)
20 . The frequency dependent values for use in Step 2 are taken from

the results of computations by Mathews and Bu�ett (private communication) using the PREM elastic

Earth model with the ocean layer replaced by solid, and for the evaluation of anelasticity e�ects, the

Widmer et al. (1991) model of mantle Q. As in Wahr and Bergen (1986), a power law was assumed

for the frequency dependence of Q with 200 s as the reference period; the value � = 0:15 was used for

the power law index. The anelasticity contribution (out of phase and in phase) to the tidal changes

in the geopotential coe�cients is at the level of one to two percent in-phase, and half to one percent

out-of-phase, i.e., of the order of 10�10.
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Table 6.1. Nominal values of solid Earth tide external potential Love numbers.

Elastic Earth Anelastic Earth

n m knm k+nm Re knm Im knm k+nm

2 0 0.29525 �0.00087 0.30190 �0:00000 �0.00089
2 1 0:29470 �0.00079 0.29830 �0:00144 �0.00080
2 2 0.29801 �0.00057 0.30102 �0.00130 �0:00057
3 0 0.093 � � �
3 1 0.093 � � �
3 2 0.093 � � �
3 3 0.094 � � �

The frequency dependence corrections to the � �Cnm and ��Snm values obtained from Step 1 are

computed in Step 2 as the sum of contributions from a number of tidal constituents belonging to

the respective bands. The contribution to � �C20 from the long period tidal constituents of various

frequencies f is

Re
X
f(2;0)

(A0�kfHf e
i�f ) =

X
f(2;0)

(A0Hf(�k
R
f cos �f � �kif sin �f ); (5a)

while the contribution to (� �C21 � i��S21) from the diurnal tidal constituents and to � �C22 � i��S22
from the semidiurnals are given by

� �C2m � i��S2m = �m
X

f(2;m)

(Am�kfHf) e
i�f ; (m = 1; 2); (5b)

where

A0 =
1

Re

p
4�

= 4:4228� 10�8 m�1; (5c)

Am =
(�1)m

Re

p
8�

= (�1)m(3:1274� 10�8) m�1; (m 6= 0); (5d)

�1 = �i; �2 = 1; (5e)

�kf = di�erence between kf � k
(0)
2m at frequency f and the nominal value k2m, in the sense kf �k2m,

�kRf = real part, and �kIf = imaginary part, of �kf ,

Hf = amplitude (m) of the term at frequency f from the harmonic expansion of the tide generating

potential, de�ned according to the convention of Cartwright and Tayler (1971), and

�f = �n � �� =
P6

i=1 ni�i, or �f = m(�g + �)� �N � �F = m(�g + �)�
P5

j=1NjFj ,

where
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�� = six-vector of Doodson's fundamental arguments �i, (�; s; h; p;N
0; ps),

�n = six-vector of multipliers ni (for the term at frequency f) of the fundamental arguments,

�F = �ve-vector of fundamental arguments Fj (the Delaunay variables l; l0; F;D;
) of nutation

theory,

�N = �ve-vector of multipliers Ni of the Delaunay variables for the nutation of frequency �f+d�g=dt,

and �g is the Greenwich Mean Sidereal Time expressed in angle units (i.e. 24h = 360�; see Chapter

5).

(� in (�g + �) is now to be replaced by 180.)

For the fundamental arguments (l; l0; F;D;
) of nutation theory and the convention followed here in

choosing their multipliers Nj, see Chapter 5. For conversion of tidal amplitudes de�ned according

to di�erent conventions to the amplitude Hf corresponding to the Cartwright-Tayler convention, use

Table 6.4 given at the end of this Chapter.

The correction due to the K1 constituent, for example, is obtained as follows, given that Am =

A1 = �3:1274 � 10�8, Hf = 0:36871, and �f = (�g + �) for this tide. If anelasticity is ignored,

(k
(0)
21 )K1

= 0:25377, and the nominal value chosen is 0.29470. Hence �kf is 0:25377 � 0:29470 =

�0:04093, and Am(�k)fHf reduces to 472:0 � 10�12. The corrections to the (21) coe�cients then

become

(� �C21)K1
= 472:0� 10�12 sin(�g + �);

(��S21)K1
= 472:0� 10�12 cos(�g + �):

With anelasticity included, (k
(0)
21 )K1

= 0:25745 � i 0:00148, and on choosing the nominal value as

(0:29830 � i 0:00144) one obtains the corrections to the coe�cients by replacing �kf in the above

calculation by (�0:04085� i 0:00004).

In general, if �kf = �kRf + i�kIf ,

(� �C2m)K1
= AmHf (�kRf sin �f + �kIf cos �f );

(��S2m)K1
= AmHf (�kRf cos �f � �kIf sin �f ):

Table 6.2a lists the results for all tidal terms which contribute 10�13 or more, after round-o�,

to the (nm) = (21) geopotential coe�cient. A cuto� at this level is used for the individual terms

in order that accuracy at the level of 3 � 10�12 be not a�ected by the accumulated contributions

from the numerous smaller terms that are disregarded. The imaginary parts of the contributions are

below cuto� (except for K1, as given above) and are not listed. Results relating to the (20) and (22)

coe�cients are presented in Tables (6.2b) and (6.2c), respectively.

Table 6.2a. Amplitudes (A1�kfHf) of the corrections for frequency dependence of k
(0)
21 , taking the

nominal value k21 for the diurnal tides as 0.29470 for the elastic case, and (0:29830� i 0:00144) for

the anelastic case. Units: 10�12. Multipliers of the Doodson arguments identifying the tidal terms

are given, as also those of the Delaunay variables.

44



Name deg/hr Doodson � s h p N 0 ps ` `0 F D 
 �kelf Amp. �kanelf Amp.

No. elas. anel.

13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -0.00044 -0.1 -0.00045 -0.1

Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -0.00044 -0.7 -0.00046 -0.7

�1 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -0.00047 -0.1 -0.00049 -0.1

13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -0.00081 -1.2 -0.00082 -1.3

O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -0.00081 -6.6 -0.00082 -6.7

N�1 14.41456 153,655 1 0 -2 1 0 0 1 0 2 -2 2 -0.00167 0.1 -0.00168 0.1

LK1 14.48741 155,455 1 0 0 -1 0 0 -1 0 2 0 2 -0.00193 0.4 -0.00193 0.4

NO1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 -0.00196 1.3 -0.00197 1.3

14.49890 155,665 1 0 0 1 1 0 1 0 0 0 1 -0.00197 0.2 -0.00198 0.3

�1 14.56955 157,455 1 0 2 -1 0 0 -1 0 0 2 0 -0.00231 0.3 -0.00231 0.3

�1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -0.00834 -1.9 -0.00832 -1.9

14.95673 163,545 1 1 -2 0 -1 0 0 0 2 -2 1 -0.01114 0.5 -0.01111 0.5

P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -0.01135 -43.3 -0.01132 -43.2

S1 15.00000 164,556 1 1 -1 0 0 1 0 1 0 0 0 -0.01650 2.0 -0.01642 2.0

15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -0.03854 -8.8 -0.03846 -8.8

K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 -0.04093 472.0 -0.04085 471.0

15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 -0.04365 68.3 -0.04357 68.2

15.04548 165,575 1 1 0 0 2 0 0 0 0 0 2 -0.04678 -1.6 -0.04670 -1.6

 1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 0.23083 -20.8 0.22609 -20.4

�1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 0.03051 -5.0 0.03027 -5.0

�1 15.51259 173,655 1 2 -2 1 0 0 1 0 0 -2 0 0.00374 -0.5 0.00371 -0.5

J1 15.58545 175,455 1 2 0 -1 0 0 -1 0 0 0 0 0.00329 -2.1 0.00325 -2.1

15.58765 175,465 1 2 0 -1 1 0 -1 0 0 0 1 0.00327 -0.4 0.00324 -0.4

SO1 16.05697 183,555 1 3 -2 0 0 0 0 0 0 -2 0 0.00198 -0.2 0.00195 -0.2

OO1 16.13911 185,555 1 3 0 0 0 0 0 0 -2 0 -2 0.00187 -0.7 0.00184 -0.6

16.14131 185,565 1 3 0 0 1 0 0 0 -2 0 -1 0.00187 -0.4 0.00184 -0.4

Table 6.2b. Corrections for frequency dependence of k
(0)
20 of the zonal tides due to anelasticity. Units:

10�12. The nominal value k20 for the zonal tides is taken as 0:30190. The real and imaginary parts �k
R
f

and �kIf of �kf are listed, along with the corresponding in phase (ip) amplitude (A0Hf�k
R
f ) and out

of phase (op) amplitude (�A0Hf�k
I
f) to be used in equation (5a). In the elastic case, k

(0)
20 = 0:29525

for all the zonal tides, and no second step corrections are needed.

Name Doodson deg/hr � s h p N 0 ps ` `0 F D 
 �kRf Amp. �kIf Amp.

No. (ip) (op)

55,565 0.00221 0 0 0 0 1 0 0 0 0 0 1 0.01347 16.6 -0.00541 -6.7

55,575 0.00441 0 0 0 0 2 0 0 0 0 0 2 0.01124 -0.1 -0.00488 0.1

Sa 56,554 0.04107 0 0 1 0 0 -1 0 -1 0 0 0 0.00547 -1.2 -0.00349 0.8

Ssa 57,555 0.08214 0 0 2 0 0 0 0 0 -2 2 -2 0.00403 -5.5 -0.00315 4.3

57,565 0.08434 0 0 2 0 1 0 0 0 -2 2 -1 0.00398 0.1 -0.00313 -0.1

58,554 0.12320 0 0 3 0 0 -1 0 -1 -2 2 -2 0.00326 -0.3 -0.00296 0.2

Msm 63,655 0.47152 0 1 -2 1 0 0 1 0 0 -2 0 0.00101 -0.3 -0.00242 0.7

65,445 0.54217 0 1 0 -1 -1 0 -1 0 0 0 -1 0.00080 0.1 -0.00237 -0.2
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Mm 65,455 0.54438 0 1 0 -1 0 0 -1 0 0 0 0 0.00080 -1.2 -0.00237 3.7

65,465 0.54658 0 1 0 -1 1 0 -1 0 0 0 1 0.00079 0.1 -0.00237 -0.2

65,655 0.55366 0 1 0 1 0 0 1 0 -2 0 -2 0.00077 0.1 -0.00236 -0.2

Msf 73,555 1.01590 0 2 -2 0 0 0 0 0 0 -2 0 -0.00009 0.0 -0.00216 0.6

75,355 1.08875 0 2 0 -2 0 0 -2 0 0 0 0 -0.00018 0.0 -0.00213 0.3

Mf 75,555 1.09804 0 2 0 0 0 0 0 0 -2 0 -2 -0.00019 0.6 -0.00213 6.3

75,565 1.10024 0 2 0 0 1 0 0 0 -2 0 -1 -0.00019 0.2 -0.00213 2.6

75,575 1.10245 0 2 0 0 2 0 0 0 -2 0 0 -0.00019 0.0 -0.00213 0.2

Mstm 83,655 1.56956 0 3 -2 1 0 0 1 0 -2 -2 -2 -0.00065 0.1 -0.00202 0.2

Mtm 85,455 1.64241 0 3 0 -1 0 0 -1 0 -2 0 -2 -0.00071 0.4 -0.00201 1.1

85,465 1.64462 0 3 0 -1 1 0 -1 0 -2 0 -1 -0.00071 0.2 -0.00201 0.5

Msqm 93,555 2.11394 0 4 -2 0 0 0 0 0 -2 -2 -2 -0.00102 0.1 -0.00193 0.2

Mqm 95,355 2.18679 0 4 0 -2 0 0 -2 0 -2 0 -2 -0.00106 0.1 -0.00192 0.1

Table 6.2c. Amplitudes (A2�kfHf ) of the corrections for frequency dependence of k
(0)
22 , taking the

nominal value k22 for the sectorial tides as 0.29801 for the elastic case, and (0:30102� i 0:00130) for

the anelastic case. Units: 10�12. The corrections are only to the real part, and are the same in both

the elastic and the anelastic cases.

Name Doodson No. deg/hr � s h p N 0 ps ` `0 F D 
 �kRf Amp.

N2 245,655 28.43973 2 -1 0 1 0 0 1 0 2 0 2 0.00006 -0.3

M2 255,555 28.98410 2 0 0 0 0 0 0 0 2 0 2 0.00004 -1.2

The total variation in geopotential coe�cient �C20 is obtained by adding to the result of Step 1

the sum of the contributions from the tidal constituents listed in Table 6.2b computed using equation

(5a). The tidal variations in �C2m and �S2m for the otherm are computed similarly, except that equation

(5b) is to be used together with Table 6.2a for m = 1 and Table 6.2c for m = 2.

Solid Earth Pole Tide

The pole tide is generated by the centrifugal e�ect of polar motion, characterized by the potential

�V = �(
2R2
e=2) sin 2�(xp cos�� yp sin�):

(See the section on Deformation due to Polar Motion in Chapter 7 for further details). The deformation

which constitutes this tide produces a perturbation k2�V in the external potential which is equivalent

to changes in the geopotential coe�cients C21 and S21. Using for k2 the elastic Earth value 0.2977

appropriate to the polar tide yields

� �C21 = �1:290� 10�9(xp);

��S21 = 1:290� 10�9(yp);
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where xp and yp are in seconds of arc as de�ned in Chapter 7. For the anelastic Earth, k2 has real

and imaginary parts kR2 = 0:3111 and kI2 = �0:0035, leading to

� �C21 = �1:348� 10�9(xp + 0:0112yp);

��S21 = 1:348� 10�9(yp � 0:0112xp):

Treatment of the Permanent Tide

The degree 2 zonal tide generating potential has a mean (time average) value which is nonzero.

This permanent (time independent) potential produces a permanent deformation which is re
ected in

the static �gure of the Earth, and a corresponding time independent contribution to the geopotential

which can be considered as part of the adopted value of �C20, as in the JGM-3 model. Therefore, for

(nm) = (20), the zero frequency part should be excluded from the expression (1). Hereafter the symbol

� �C20 is reserved for the temporally varying part of the tidal contribution to �C20; the expression (1)

for (mn) = (20) will be redesignated as �C�
20.

� �C�
20 =

k20

5

3X
j=2

GMj

GM�

�
Re

rj

�3
�P20(sin �j):

Its zero frequency part is

h� �C20i = A0H0k20 = (4:4228� 10�8)(�0:31460)k20: (6)

To represent the tide induced changes in the (20) geopotential, one should then use only the time

variable part

� �C20 = � �C�
20 � h��C20i: (7)

In evaluating it, the same value should be used for k20 in both � �C�
20 and h� �C20i. If the elastic Earth

value k20 = 0:29525 is used, h� �C20i = �4:108 � 10�9, while with the value k20 = 0:30190 of the

anelastic case, h� �C20i = �4:201� 10�9.

The restitution of the indirect e�ect of the permanent tide is done to be consistent with the

XVIII IAG General Assembly Resolution 16; but to obtain the e�ect of the permanent tide on the

geopotential, one can use the same formula as equation (6) using the 
uid limit Love number which

is k = 0:94.

E�ect of the Ocean Tides

The dynamical e�ects of ocean tides are most easily incorporated by periodic variations in the

normalized Stokes' coe�cients. These variations can be written as

� �Cnm � i��Snm = Fnm
X

s(n;m)

�X
+

(C�
snm � iS�snm)e

�i�f ; (8)

where

Fnm =
4�G�w

g

s
(n+m)!

(n �m)!(2n+ 1)(2� �om)

 
1 + k0n
2n + 1

!
;
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g and G are given in Chapter 4, �w = density of seawater = 1025 kg m�3,

k0n = load deformation coe�cients (k02 = �0:3075; k03 = �0:195; k04 = �0:132; k05 = �0:1032;
k06 = �0:0892),

C�
snm; S

�
snm = ocean tide coe�cients (m) for the tide constituent s

�s = argument of the tide constituent s as de�ned in the solid tide model (Chapter 7).

The summation over + and - denotes the respective addition of the retrograde waves using the

top sign and the prograde waves using the bottom sign. The C�
snm and S�snm are the coe�cients of a

spherical harmonic decomposition of the ocean tide height for the ocean tide due to the constituent s

of the tide generating potential.

For each constituent s in the diurnal and semi-diurnal tidal bands, these coe�cients were obtained

from the CSR 3.0 ocean tide height model (Eanes et al., 1996), which was estimated from the TOPEX/

Poseidon satellite altimeter data. For each constituent s in the long period band, the self-consistent

equilibrium tide model of Ray and Cartwright (1994) was used. The list of constituents for which the

coe�cients were determined was obtained from the Cartwright and Tayler (1971) expansion of the

tide raising potential.

These ocean tide height harmonics are related to the Schwiderski convention (Schwiderski, 1983)

according to

C�
snm � iS�snm = �iĈ�

snme
i(��

snm
+�s); (9)

where

Ĉ�
snm = ocean tide amplitude for constituent s using the Schwiderski notation,

��snm = ocean tide phase for constituent s,

and �s is obtained from Table 6.3, with Hs being the Cartwright and Tayler (1971) amplitude at

frequency s.

Table 6.3. Values of �s for long-period, diurnal and semidiurnal tides.

Tidal Band Hs > 0 Hs < 0

Long Period � 0

Diurnal �
2

��
2

Semidiurnal 0 �

For clarity, the terms in equation 1 are repeated in both conventions:

� �Cnm = Fnm
X

s(n;m)

[(C+
snm + C�

snm) cos �s + (S+snm + S�snm) sin �s] (10a)

or

� �Cnm = Fnm
X

s(n;m)

[Ĉ+
snm sin(�s + �+snm + �s) + Ĉ�

snm sin(�s + ��snm + �s)]; (10b)
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��Snm = Fnm
X

s(n;m)

[(S+snm � S�snm) cos�s � (C+
snm � C�

snm) sin �s] (10c)

or

� �Snm = Fnm
X

s(n;m)

[Ĉ+
snm cos(�s + �+snm + �s)� Ĉ�

snm cos(�s + ��snm + �s)]: (10d)

The orbit element perturbations due to ocean tides can be loosely grouped into two classes. The

resonant perturbations arise from coe�cients for which the order (m) is equal to the �rst Doodson's

argument multiplier n1 of the tidal constituent s (See Note), and have periodicities from a few days

to a few years. The non-resonant perturbations arise when the order m is not equal to index n1. The

most important of these are due to ocean tide coe�cients for which m = n1 + 1 and have periods of

about 1 day.

Certain selected constituents (e.g. Sa and S2) are strongly a�ected by atmospheric mass dis-

tribution (Chapman and Lindzen, 1970). The resonant harmonics (for m = n1) for some of these

constituents were determined by their combined e�ects on the orbits of several satellites. These multi-

satellite values then replaced the corresponding values from the CSR3.0 altimetric ocean tide height

model.

Based on the predictions of the linear perturbation theory outlined in Casotto (1989), the relevant

tidal constituents and spherical harmonics were selected for several geodetic and altimetric satellites.

For geodetic satellites, both resonant and non-resonant perturbations were analyzed,whereas for alti-

metric satellites, only the non-resonant perturbations were analyzed. For the latter, the adjustment

of empirical parameters during orbit determination removes the errors in modeling resonant acceler-

ations. The resulting selection of ocean tidal harmonics was then merged into a single recommended

ocean tide force model. With this selection the error of omission on TOPEX is approximately 5 mm

along-track, and for Lageos it is 2 mm along-track. The recommended ocean tide harmonic selection

is available via anonymous ftp from ftp.csr.utexas.edu.

For high altitude geodetic satellites like Lageos, in order to reduce the required computing time, it

is recommended that out of the complete selection, only the constituents whose Cartwright and Tayler

amplitudes Hs is greater than 0.5mm be used, with their spherical harmonic expansion terminated at

maximum degree and order 8. The omission errors from this reduced selection on Lageos is estimated

at approximately 1 cm in the transverse direction for short arcs.

NOTE: The Doodson variable multipliers (�n) are coded into the argument number (A) after Doodson

(1921) as:

A = n1(n2 + 5)(n3 + 5):(n4 + 5)(n5 + 5)(n6 + 5):

Conversion of tidal amplitudes de�ned according to di�erent conventions

The de�nition used for the amplitudes of tidal terms in the recent high-accuracy tables di�er

from each other and from Cartwright and Tayler (1971). Hartmann and Wenzel (1995) tabulate

amplitudes in units of the potential (m2s�2), while the amplitudes of Roosbeek (1996), which follow

the Doodson (1921) convention, are dimensionless. To convert them to the equivalent tide heights

Hf of the Cartwright-Tayler convention, multiply by the appropriate factors from Table 6.4. The

following values are used for the constants appearing in the conversion factors: Doodson constant D1

= 2.63358352855m2 s�2; ge � g at the equatorial radius = 9.79828685 (fromGM = 3:986004415�1014

m3 s�2, Re = 6378136:55 m).
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Table 6.4 Factors for conversion to Cartwright-Tayler amplitudes from those de�ned according to

Doodson's and Hartmann and Wenzel's conventions

From Doodson From Hartmann & Wenzel

f20 = �
p
4�p
5

D1

ge
= �0:426105 f 020 =

2
p
�

ge
= 0:361788

f21 = �2
p
24�

3
p
5

D1

ge
= �0:695827 f 021 = �

p
8�
ge

= �0:511646

f22 =
p
96�

3
p
5

D1

ge
= 0:695827 f 022 =

p
8�
ge

= 0:511646

f30 = �
p
20�p
7

D1

ge
= �0:805263 f 030 =

2
p
�

ge
= 0:361788

f31 = �
p
720�

8
p
7

D1

ge
= �0:603947 f 031 = �

p
8�
ge

= �0:511646

f32 =
p
1440�

10
p
7

D1

ge
= 0:683288 f 032 =

p
8�
ge

= 0:511646

f33 = �
p
2880�

15
p
7

D1

ge
= �0:644210 f 033 = �

p
8�
ge

= �0:511646
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CHAPTER 7 SITE DISPLACEMENT

Local Site Displacement due to Ocean Loading

Local site displacement is understood as an e�ect of (visco-) elastic deformation of the Earth

in response to time-varying surface loads. The reference point of zero deformation is the joint mass

center of the solid Earth and the load, while the sites are attached to the solid Earth. This convention

implies that the rigid body translation of the solid Earth that counterbalances the motion of the load's

mass center is not contained in the local displacement model. This convention follows strictly Farrell

(1972).

Ocean Loading

Three dimensional site displacements due to ocean tide loading are computed using the following

scheme. Let �c denote a displacement component (radial, west, south) at a particular site and time

t. Let W denote the tide generating potential (e.g. Tamura, 1987; Cartwright and Tayler, 1971;

Cartwright and Edden, 1973),

W = g
X
j

KjP
mj

2 (cos ) cos(!jt + �j +mj�); (1)

where only degree two harmonics are retained. The symbols designate colatitude  , longitude �, tidal

angular velocity !j , amplitude Kj and the astronomical argument �j at t = 0h. Spherical harmonic

order mj distinguishes the fundamental bands, i. e. long-period (m = 0), diurnal (m = 1) and

semi-diurnal (m = 2). The parameters Kj and !j are used to obtain the most completely interpolated

form

�c =
X
j

acj cos(!jt + �j � �cj); (2)

with

acj cos�cj = Kj

�
Ack cos �ck

�Kk

(1� p) +
Ac;k+1 cos �c;k+1

�Kk+1

p

�
;

acj sin�cj = Kj

�
Ack sin �ck

�Kk

(1� p) +
Ac;k+1 sin �c;k+1

�Kk+1

p

�
:

For each site, the amplitudes Ack and phases �ck ; 1 � k � 11; are taken from Table 7.1. For

clarity symbols written with bars overhead designate tidal potential quantities associated with the

small set of partial tides represented in the table. These are the semi-diurnal waves M2; S2; N2; K2;

the diurnal waves K1; O1; P1; Q1; and the long-period waves Mf ;Mm; and Ssa:

Interpolation is possible only within a fundamental band, i.e. we demand

�mk = mj = �mk+1: (3)

Then

p =
!j � �!k

�!k+1 � �!k
; �!k � !j � �!k+1:

If no �!k or �!k+1 can be found meeting (3), p is set to zero or one, respectively.
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A shorter form of (2) is obtained if the summation considers only the tidal species of Table 7.1

and corrections for the modulating e�ect of the lunar node. Then,

�c =
X
j

fjAcj cos(!jt+ �j + uj � �cj); (4)

where fj and uj depend on the longitude of the lunar node according to Table 26 of Doodson (1928).

The astronomical arguments needed in (4) can be computed with subroutine ARG below.

C SUBROUTINE ARG(IYEAR,DAY,ANGLE)

C

C COMPUTES THE ANGULAR ARGUMENT WHICH DEPENDS ON TIME FOR 11

C TIDAL ARGUMENT CALCULATIONS

C

C

C ORDER OF THE 11 ANGULAR QUANTITIES IN VECTOR ANGLE

C

C 01-M2 02-S2

C 03-N2 04-K2

C 05-K1 06-O1

C 07-P1 08-Q1

C 09-Mf 10-Mm

C 11-Ssa

C

C TAKEN FROM 'TABLE 1 CONSTANTS OF MAJOR TIDAL MODES'

C WHICH DR. SCHWIDERSKI SENDS ALONG WITH HIS TAPE OF TIDAL

C AMPLITUDES AND PHASES

C

C

C INPUT--

C

C IYEAR - EX. 79 FOR 1979

C DAY - DAY OF YEAR GREENWICH TIME

C EXAMPLE 32.5 FOR FEB 1 12 NOON

C 1.25 FOR JAN 1 6 AM

C

C OUTPUT--

C

C ANGLE - ANGULAR ARGUMENT FOR SCHWIDERSKI COMPUTATION

C

C***********************************************************

C

C

C C A U T I O N

C

C OCEAN LOADING PHASES COMPUTED FROM SCHWIDERSKI'S MODELS

C REFER TO THE PHASE OF THE ASSOCIATED SOLID EARTH TIDE

C GENERATING POTENTIAL AT THE ZERO MERIDIAN ACCORDING TO

C

53



C OL DR = OL AMP X COS (SE PHASE" - OL PHASE)

C

C WHERE OL = OCEAN LOADING TIDE,

C SE = SOLID EARTH TIDE GENERATING POTENTIAL.

C

C IF THE HARMONIC TIDE DEVELOPMENT OF CARTWRIGHT, ET AL.

C ( = CTE) (1971, 1973) IS USED, MAKE SURE THAT SE PHASE"

C TAKES INTO ACCOUNT

C

C (1) THE SIGN OF SE AMP IN THE TABLES OF CARTWRIGHT ET AL.

C

C (2) THAT CTE'S SE PHASE REFERS TO A SINE RATHER THAN A

C COSINE FUNCTION IF (N+M) = (DEGREE + ORDER) OF THE

C TIDE SPHERICAL HARMONIC IS ODD.

C

C I.E. SE PHASE" = TAU(T) N1 + S(T) N2 + H(T) N3

C + P(T) N4 + N'(T) N5 + PS(T) N6

C + PI IF CTE'S AMPLITUDE COEFFICIENT < 0

C + PI/2 IF (DEGREE + N1) IS ODD

C

C WHERE TAU ... PS = ASTRONOMICAL ARGUMENTS,

C N1 ... N6 = CTE'S ARGUMENT NUMBERS.

C

C MOST TIDE GENERATING SOFTWARE COMPUTE SE PHASE" (FOR

C USE WITH COSINES).

C

C THIS SUBROUTINE IS VALID ONLY AFTER 1973.

C

C******************************************************************

SUBROUTINE ARG(IYEAR,DAY,ANGLE)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

REAL ANGFAC(4,11)

DIMENSION ANGLE(11),SPEED(11)

C

C SPEED OF ALL TERMS IN RADIANS PER SEC

C

EQUIVALENCE (SPEED(1),SIGM2),(SPEED(2),SIGS2),(SPEED(3),SIGN2)

EQUIVALENCE (SPEED(4),SIGK2),(SPEED(5),SIGK1),(SPEED(6),SIGO1)

EQUIVALENCE (SPEED(7),SIGP1),(SPEED(8),SIGQ1),(SPEED(9),SIGMF)

EQUIVALENCE (SPEED(10),SIGMM),(SPEED(11),SIGSSA)

DATA SIGM2/1.40519D-4/

DATA SIGS2/1.45444D-4/

DATA SIGN2/1.37880D-4/

DATA SIGK2/1.45842D-4/

DATA SIGK1/.72921D-4/

DATA SIGO1/.67598D-4/

DATA SIGP1/.72523D-4/

DATA SIGQ1/.64959D-4/

DATA SIGMF/.053234D-4/
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DATA SIGMM/.026392D-4/

DATA SIGSSA/.003982D-4/

DATA ANGFAC/2.E0,-2.E0,0.E0,0.E0,4*0.E0,

. 2.E0,-3.E0,1.E0,0.E0,2.E0,3*0.E0,

. 1.E0,2*0.E0,.25E0,1.E0,-2.E0,0.E0,-.25E0,

. -1.E0,2*0.E0,-.25E0,1.E0,-3.E0,1.E0,-.25E0,

. 0.E0,2.E0,2*0.E0,0.E0,1.E0,-1.E0,0.E0,

. 2.E0,3*0.E0/

DATA TWOPI/6.28318530718D0/

DATA DTR/.174532925199D-1/

C

C DAY OF YEAR

C

ID=DAY

C

C FRACTIONAL PART OF DAY IN SECONDS

C

FDAY=(DAY-ID)*86400.D0

ICAPD=ID+365*(IYEAR-75)+((IYEAR-73)/4)

CAPT=(27392.500528D0+1.000000035D0*ICAPD)/36525.D0

C

C MEAN LONGITUDE OF SUN AT BEGINNING OF DAY

C

H0=(279.69668D0+(36000.768930485D0+3.03D-4*CAPT)*CAPT)*DTR

C

C MEAN LONGITUDE OF MOON AT BEGINNING OF DAY

C

S0=(((1.9D-6*CAPT-.001133D0)*CAPT+481267.88314137D0)*CAPT

. +270.434358D0)*DTR

C

C MEAN LONGITUDE OF LUNAR PERIGEE AT BEGINNING OF DAY

C

P0=(((-1.2D-5*CAPT-.010325D0)*CAPT+4069.0340329577D0)*CAPT

. +334.329653D0)*DTR

DO 500 K=1,11

ANGLE(K)=SPEED(K)*FDAY+ANGFAC(1,K)*H0+ANGFAC(2,K)*S0

. +ANGFAC(3,K)*P0+ANGFAC(4,K)*TWOPI

ANGLE(K)=DMOD(ANGLE(K),TWOPI)

IF(ANGLE(K).LT.0.D0)ANGLE(K)=ANGLE(K)+TWOPI

500 CONTINUE

RETURN

END

Table 7.1 is available electronically by anonymous ftp to maia.usno.navy.mil or

ftp://gere.oso.chalmers.se/�pub/hgs/oload/README. For sites not contained in the list the fol-

lowing is recommended: If the distance to the nearest site contained in the table is less than ten

km, its data can be substituted. In other cases, coe�cients and/or software can be requested from

hgs@oso.chalmers.se (Hans-Georg Scherneck). The Tamura tide potential is available from the

International Centre for Earth Tides, Observatoire Royal de Belgique, Bruxelles.
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The coe�cients of Table 7.1 have been computed according to Scherneck (1983, 1991). Tangential

displacements are to be taken positive in west and south directions. The ocean tide maps adopted are

due to LeProvost et al. (1994), Schwiderski (1983), Schwiderski and Szeto (1981), and Flather (1981).

Re�ned coastlines have been derived from the topographic data sets ETOPO5 and Terrain Base (Row

et al., 1995) of the National Geophysical Data Center, Boulder, CO. Ocean tide mass budgets have

been constrained using a uniform co-oscillating oceanic layer. Load convolution employed a disk-

integrating Green's function method (Farrell, 1972; Zschau, 1983; Scherneck, 1990). An assessment of

the accuracy of the loading model is given in Scherneck (1993). Adoption of more recent ocean tide

results drawing from TOPEX/POSEIDON results is currently under consideration.

Table 7.1 Sample of ocean loading table �le. Each site record shows a header with the site name, the

CDPmonument number, geographic coordinates and comments. First three rows of numbers designate

amplitudes (meter), radial, west, south, followed by three lines with the corresponding phase values

(degrees).

Columns designate partial tides M2; S2; N2; K2; K1; O1; P1; Q1;Mf ;Mm; and Ssa.

$$

ONSALA60 7213

$$

$$ Computed by H.G. Scherneck, Uppsala University, 1989

$$ ONSALA 7213 lon/lat: 11.9263 57.3947

.00384 .00091 .00084 .00019 .00224 .00120 .00071 .00003 .00084 .00063 .00057

.00124 .00034 .00031 .00009 .00042 .00041 .00015 .00006 .00018 .00010 .00010

.00058 .00027 .00021 .00008 .00032 .00017 .00009 .00004 .00007 .00001 .00020

-56.0 -46.1 -90.7 -34.4 -44.5 -123.2 -49.6 178.4 14.9 37.3 24.6

75.4 97.6 40.8 94.8 119.0 25.4 98.7 -14.1 -177.0 -126.7 -175.8

84.2 131.3 77.7 103.9 17.2 -55.0 25.2 -165.0 173.3 121.8 91.3

E�ects of the Solid Earth Tides

Site displacements caused by tides of spherical harmonic degree and order (nm) are characterized

by the Love number hnm and the Shida number lnm. The e�ective values of these numbers depend on

station latitude and tidal frequency (Wahr, 1981). This dependence is a consequence of the ellipticity

and rotation of the Earth, and includes a strong frequency dependence within the diurnal band due to

the Nearly Diurnal Free Wobble resonance. A further frequency dependence, which is most pronounced

in the long period tidal band, arises from mantle anelasticity which leads to corrections to the elastic

Earth Love numbers; these corrections have a small imaginary part and cause the tidal displacements

to lag slightly behind the tide generating potential. All these e�ects need to be taken into account

when an accuracy of 1 mm is desired in determining station positions.

In order to account for the latitude dependence of the e�ective Love and Shida numbers, the

representation in terms of multiple h and l parameters employed by Mathews et al. (1995) is used.

In this representation, parameters h(0) and l(0) play the roles of h2m and l2m, while the latitude

dependence is expressed in terms of additional parameters h(2); h0 and l(1); l(2); l0. These parameters

are de�ned through their contributions to the site displacement as given by equations (5) below.

Their numerical values as listed in Mathews et al. (1995) have since been revised, and the new values,

presented in Table 7.2 are used here. These values pertain to the elastic Earth and anelasticity models

referred to in Chapter 6.
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The vector displacement due to a tidal term of frequency f is given in terms of the several

parameters by the following expressions that result from evaluation of the de�ning equation (6) of

Mathews et al. (1995):

For a long-period tide of frequency f :

�~rf =

r
5

4�
Hf

("
h(�)

�
3

2
sin2 ��

1

2

�
+

r
4�

5
h0

#
cos �f r̂ + 3l(�) sin� cos� cos �f n̂

+ cos�

"
3l(1) sin2 ��

r
4�

5
l0

#
sin �f ê

)
:

(5a)

For a diurnal tide of frequency f :

�~rf = �

r
5

24�
Hf

(
h(�)3 sin� cos� sin(�f + �) r̂

+

"
3l(�) cos2�� 3l(1) sin2 � +

r
24�

5
l0

#
sin(�f + �) n̂

+

" 
3l(�)�

r
24�

5
l0

!
sin �� 3l(1) sin� cos 2�

#
cos(�f + �) ê

)
:

(5b)

For a semidiurnal tide of frequency f :

�~rf =

r
5

96�
Hff[h(�)3 cos2 � cos(�f + 2�) r̂� 6 sin� cos�[l(�) + l(1)] cos(�f + 2�) n̂

� 6 cos�[l(�) + l(1) sin2 �] sin(�f + 2�) êg:
(5c)

In the above expressions,

h(�) = h(0) + h(2)[(3=2) sin2 �� 1=2]; l(�) = l(0) + l(2)[(3=2) sin2 �� 1=2]; (6)

Hf = amplitude (m) of the tidal term of frequency f ,

� = geocentric latitude of station,

� = east longitude of station,

�f = tide argument for tidal constituent with frequency f ,
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ê = unit vector in the east direction,

n̂ = unit vector at right angles to r̂ in the northward direction.

The convention used in de�ning the tidal amplitude Hf is as in Cartwright and Tayler (1971).

To convert amplitudes de�ned according to other conventions that have been employed in recent more

accurate tables, use the conversion factors given in Chapter 6, Table 6.4.

Equations (5) assume that the Love and Shida number parameters are all real. Generalization to

the case of complex parameters (anelastic earth) is done simply by making the following replacements

for the combinations L cos(�f +m�) and L sin(�f +m�), wherever they occur in those equations:

L cos(�f +m�)! LR cos(�f +m�)� LI sin(�f +m�); (7a)

L sin(�f +m�)! LR sin(�f +m�) + LI cos(�f +m�); (7b)

where L is a generic symbol for h(�); h0; l(�); l(1); and l0, and LR and LI stand for their respective

real and imaginary parts. Table 7.2 lists the values of the Love and Shida number parameters. The

Earth model on which they are based is the 1 sec PREM, modi�ed by replacement of the ocean layer

by solid (Dehant, 1987, Wang, 1994) and by adjustment of the 
uid core ellipticity to make the FCN

period = 430 sidereal days as inferred from the resonance in nutations. The tidal frequencies shown

in the table are in cycles per sidereal day (cpsd). Periods, in solar days, of the nutations associated

with the diurnal tides are also shown.

Table 7.2. Displacement Love number parameters for degree 2 tides. Quantities with subscripts elas

(anelas) are computed ignoring (including) anelasticity e�ects. Superscripts R and I identify the real

and imaginary parts, respectively.

Name Period Frequency h
(0)

elas h
(0)R

anelas h
(0)I

anelas h(2) h0

Semidiurnal -2 cpsd .6026 .6078 -.0022 -.0006

Diurnal

Q1 9.13 -0.89080 .5971 .6033 -.0025 -.0006

145,545 13.63 -0.92685 .5964 .6026 -.0025 -.0006

O1 13.66 -0.92700 .5964 .6026 -.0025 -.0006

NO1 27.55 -0.96381 .5941 .6003 -.0025 -.0006

�1 121.75 -0.99181 .5813 .5876 -.0025 -.0007

P1 182.62 -0.99454 .5753 .5816 -.0025 -.0007

165,545 6798.38 -0.99985 .5214 .5280 -.0027 -.0007

K1 in�nity -1.00000 .5166 .5232 -.0027 -.0008

165,565 -6798.38 -1.00015 .5112 .5178 -.0027 -.0008

 1 -365.26 -1.00273 1.0582 1.0534 .0020 -.0001

�1 -182.62 -1.00546 .6589 .6644 -.0022 -.0006
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Long period

55,565 6798.38 .000015 .5998 .6344 -.0093 -.0006 .0001

Ssa 182.62 .000546 .5998 .6182 -.0054 -.0006 .0001

Mm 27.55 .003619 .5998 .6126 -.0041 -.0006 .0001

Mf 13.66 .007300 .5998 .6109 -.0037 -.0006 .0001

75,565 13.63 .007315 .5998 .6109 -.0037 -.0006 .0001

Name Period Frequency l
(0)

elas l
(0)R

anelas l
(0)I

anelas l(1) l(2) l0

Semidiurnal -2 cpsd .0831 .0847 -.0007 .0024 .0002

Diurnal

Q1 9.13 -0.89080 .0829 .0848 -.0007 .0012 .0002 -.0002

145,545 13.63 -0.92685 .0829 .0848 -.0007 .0012 .0002 -.0002

O1 13.66 -0.92700 .0829 .0848 -.0007 .0012 .0002 -.0002

M1 27.55 -0.96381 .0830 .0849 -.0007 .0012 .0002 -.0002

�1 121.75 -0.99181 .0834 .0853 -.0007 .0012 .0002 -.0002

P1 182.62 -0.99454 .0836 .0855 -.0007 .0012 .0002 -.0002

165,545 6798.38 -0.99985 .0853 .0871 -.0007 .0011 .0002 -.0003

K1 in�nity -1.00000 .0854 .0872 -.0007 .0011 .0002 -.0003

165,565 -6798.38 -1.00015 .0856 .0874 -.0007 .0011 .0002 -.0003

 1 -365.26 -1.00273 .0684 .0710 -.0010 .0019 .0002 .0001

�1 -182.62 -1.00546 .0810 .0829 -.0008 .0013 .0002 -.0002

Long period

55,565 6798.38 .000015 .0831 .0936 -.0028 .0000 .0002

Ssa 182.62 .000546 .0831 .0886 -.0016 .0000 .0002

Mm 27.55 .003619 .0831 .0870 -.0012 .0000 .0002

Mf 13.66 .007300 .0831 .0864 -.0011 .0000 .0002

75,565 13.63 .007315 .0831 .0864 -.0011 .0000 .0002

Computation of the variations of station coordinates due to solid Earth tides, like that of geopo-

tential variations, is done most e�ciently by the use of a two-step procedure. The evaluations in the

�rst step use the expression in the time domain for the full degree 2 tidal potential or for the parts that

pertain to particular bands (m = 0; 1; or 2). Nominal values used for the Love and Shida numbers

h2m and l2m are common to all the tidal constituents involved in the potential and to all stations.

They are chosen with reference to the values in Table 7.2 so as to minimize the computational e�ort

needed in Step 2. Along with expressions for the dominant contributions from h(0) and l(0) to the

tidal displacements, relatively small contributions from some of the other parameters are included in

Step 1 for reasons of computational e�ciency. The displacements caused by the degree 3 tides are also

computed in the �rst step, using constant values for h3 and l3.

Corrections to the results of the �rst step are needed to take account of the frequency dependent

deviations of the Love and Shida numbers from their respective nominal values, and also to compute
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the out of phase contributions from the zonal tides. The scheme of computation is outlined in the

chart below.

CORRECTIONS FOR THE STATION TIDAL DISPLACEMENTS

Step 1 : Corrections to be computed in the time domain

in phase for degree 2 and 3 Nominal values

. for degree 2 ! eq (8) h2 ! h(�) = h(0) + h(2)[(3 sin2 � � 1)=2]

l2 ! l(�) = l(0) + l(2)[(3 sin2 �� 1)=2]

elastic h(0) = 0:6026, h(2) = �0:0006; l(0) = 0:0831, l(2) = 0:0002

anelastic h(0) = 0:6078, h(2) = �0:0006; l(0) = 0:0847, l(2) = 0:0002

. for degree 3 ! eq (9) h3 = 0:292 and l3 = 0:015

out-of-phase for degree 2 only Nominal values

. diurnal tides ! eq (13) hI = �0:0025 and lI = �0:0007

. semi-diurnal tides ! eq (14) hI = �0:0022 and lI = �0:0007

contribution from latitude dependence Nominal values

. diurnal tides ! eq (11) l(1) = 0:0012

. semi-diurnal tides ! eq (12) l(1) = 0:0024

Step 2 : Corrections to be computed in the frequency domain and to be added to results of Step 1

in phase for degree 2

. diurnal tides ! eqs (15) ! Sum over all the components of Table 7.3a

. semi-diurnal tides negligible

in phase and out of phase for degree 2

. long-period tides ! eqs (16)! Sum over all the components of Table 7.3b

Displacement due to degree 2 tides, with nominal values for h
(0)
2m and l

(0)
2m

The �rst stage of the Step 1 calculations employs real nominal values h2 and l2 common to all

the degree 2 tides for the Love and Shida numbers. It is found to be computationally most economical

to choose these to be the values for the semidiurnal tides (which have very little intraband variation).

For the same reason, the nominal values used when anelasticity is included are di�erent from the

elastic case. (Anelasticity contributions are at the one percent level, which is about 4 mm in the

radial displacement due to the full degree 2 tide.) The out of phase contributions due to anelasticity

are dealt with separately below.

On using the nominal values, the vector displacement of the station due to the degree 2 tides is

given by
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�~r =

3X
j=2

GMjR
4
e

GM�R
3
j

�
h2 r̂

�
3

2
(R̂j � r̂)2 �

1

2

�
+ 3l2(R̂j � r̂)[R̂j � (R̂j � r̂) r̂]

�
; (8)

where h
(0)
22 and l

(0)
22 of the semidiurnal tides are chosen as the nominal values h2 and l2. These values

depend on whether anelasticity is included in the computation or not, but no imaginary parts are

included at this stage. In equation (8),

GMj = gravitational parameter for the Moon (j = 2) or the Sun (j = 3),

GM� = gravitational parameter for the Earth,

R̂j; Rj = unit vector from the geocenter to Moon or Sun and the magnitude of that vector,

Re = Earth's equatorial radius,

r̂; r = unit vector from the geocenter to the station and the magnitude of that vector,

h2 = nominal degree 2 Love number,

l2 = nominal degree 2 Shida number.

Note that the part proportional to h2 gives the radial (not vertical) component of the tide-induced

station displacement, and the terms in l2 represent the vector displacement transverse to the radial

direction (and not in the horizontal plane).

The computation just described may be generalized to include the latitude dependence arising

through h(2) by simply adding h(2)[(3=2) sin2 � � (1=2)] to the constant nominal value given above,

with h(2) = �0:0006. The addition of a similar term (with l(2) = 0:0002) to the nominal value of l2
takes care of the corresponding contribution to the transverse displacement. The resulting incremental

displacements are small, not exceeding 0.4 mm radially and 0.2 mm in the transverse direction.

Displacements due to degree 3 tides

The Love numbers of the degree 3 tides may be taken as real and constant in computations to

the degree of accuracy aimed at here. The vector displacement due to these tides is then given by

�~r =

3X
j=2

GMjR
5
e

GM�R
4
j

�
h3r̂

�
5

2
(R̂j � r̂)3 �

3

2
(R̂j � r̂)

�
+ l3

�
15

2
(R̂j � r̂)2 �

3

2

�
[R̂j � (R̂j � r̂)r̂]

�
: (9)

Only the Moon's contribution (j = 2) need be computed, the term due to the Sun being quite

ignorable. The transverse part of the displacement (9) does not exceed 0.2 mm, but the radial

displacement can reach 1.7 mm.
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Contributions to the transverse displacement due to the l(1) term

The imaginary part of l(1) (anelastic case) is completely ignorable, and so is the di�erence between

the real part and the elastic Earth value, as well as the intra-band frequency dependence; and l(1) is

e�ectively zero in the zonal band.

In the expressions given below, and elsewhere in this Chapter,

�j = body �xed geocentric latitude of Moon or Sun, and

�j = body �xed east longitude (from Greenwich) of Moon or Sun.

The following formulae may be employed when the use of Cartesian coordinates Xj ; Yj ; Zj of the

body relative to the terrestrial reference frame is preferred:

P 0
2 (sin �j) =

1

R2
j

�
3

2
Z2
j �

1

2
R2
j

�
; (10a)

P 1
2 (sin �j) cos�j =

3XjZj

R2
j

; P 1
2 (sin �j) sin�j =

3YjZj

R2
j

; (10b)

P 2
2 (sin �j) cos 2�j =

3

R2
j

(X2
j � Y 2

j ); P 2
2 (sin �j) sin 2�j =

6

R2
j

XjYj : (10c)

Contribution from the diurnal band (with l(1) = 0:0012):

�~t = �l(1) sin �
3X

j=2

GMjR
4
e

GM�R
3
j

P 1
2 (sin �j)[sin� cos(�� �j) n̂� cos 2� sin(�� �j) ê]: (11)

Contribution from the semidiurnal band (with l(1) = 0:0024):

�~t = �
1

2
l(1) sin � cos�

3X
j=2

GMjR
4
e

GM�R
3
j

P 2
2 (sin �j)[cos 2(�� �j) n̂+ sin � sin 2(�� �j) ê]: (12)

The contributions of the l(1) term to the transverse displacements caused by the diurnal and

semidiurnal tides could be up to 0.8 mm and 1.0 mm respectively.

Out of phase contributions from the imaginary parts of h
(0)
2m and l

(0)
2m

In the following, hI and lI stand for the imaginary parts of h
(0)
2m and l

(0)
2m, which do not exist in

the elastic case.

Contributions �r to radial and �~t to transverse displacements from diurnal tides (with hI =

�0:0025; lI = �0:0007):
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�r = �
3

4
hI

3X
j=2

GMjR
4
e

GM�R
3
j

sin 2�j sin 2� sin(�� �j); (13a)

�~t = �
3

2
lI

3X
j=2

GMjR
4
e

GM�R
3
j

sin 2�j [cos 2� sin(�� �j)n̂+ sin� cos(�� �j)ê]: (13b)

Contributions from semidiurnal tides (with hI = �0:0022, lI = �0:0007):

�r = �
3

4
hI

3X
j=2

GMjR
4
e

GM�R
3
j

cos2 �j cos
2 � sin 2(�� �j); (14a)

�~t =
3

4
lI

3X
j=2

GMjR
4
e

GM�R
3
j

cos2 �j [sin 2� sin 2(�� �j)n̂� 2 cos� cos 2(�� �j)ê]: (14b)

The out of phase contributions from the zonal tides has no closed expression in the time domain.

Computations of Step 2 are to take account of the intraband variation of h
(0)
2m and l

(0)
2m. Variations

of the imaginary parts (anelastic case) are ignorable except as stated below. For the zonal tides,

however, the contributions from the imaginary part have to be computed in Step 2.

A FORTRAN program for computing the various corrections is available at ftpserver.oma.be,

subdirectory /pub/astro/dehant/IERS (anonymous-ftp system).

Correction for frequency dependence of the Love and Shida numbers

(a) Contributions from the diurnal band

Corrections to the radial and transverse station displacements �r and �~t due to a diurnal tidal

term of frequency f are obtainable from equation (5b):

�r = �Rf sin 2� sin(�f + �); (15a)

�~t = �Tf [sin� cos(�f + �) ê+ cos 2� sin(�f + �) n̂]; (15b)

where

�Rf = �
3

2

r
5

24�
�hfHf and �Tf = �3

r
5

24�
�lfHf ; (15c)

and

�hf = di�erence of h(0) at frequency f from the nominal value of h2,

�lf = di�erence of l(0) at frequency f from the nominal value of l2.
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Values of �Rf and �Tf listed in Tables 7.3a and 7.3b are for the constituents that must be taken

into account to ensure an accuracy of 1 mm. �Rel
f and �T elf are for the elastic case, and �Ranel

f and

�Tanelf are for use when anelasticity e�ects are included. It should be noted that di�erent nominal

values are used for the two cases in order to minimize the number of terms for which corrections are

needed.

Corrections to the out-of-phase parts, arising from variation of the imaginary parts of h
(0)
21 and

l
(0)
21 , are very small. The only one with an amplitude exceeding the cuto� of 0.05 mm used for the

table is 0.06 mm in the vertical component due to the K1 tide. Its contribution to the displacement

is 0:06 sin2� cos(�g + � + �) mm.

Table 7.3a. Corrections due to frequency variation of Love and Shida numbers for diurnal tides. Units:

mm. All terms with radial correction � 0.05 mm are shown. Nominal values are h = 0:6026 and

l = 0:0831 for the elastic case, and hR = 0:6078 and lR = 0:0847 for the real parts in the anelastic

case. Frequencies shown are in degrees per hour.

Name Frequency Doodson � s h p N 0 ps ` `0 F D 
 �Rel
f �T elf �Ranel

f �Tanelf

Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -0.11 -0.01 -0.09 0.00

13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -0.12 -0.01 -0.10 0.00

O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -0.63 -0.04 -0.53 0.02

NO1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 0.07 0.00 0.06 -0.00

�1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -0.06 0.00 -0.05 0.00

P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1.29 0.05 -1.23 0.07

15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -0.23 0.01 -0.22 0.01

K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 12.25 -0.65 12.04 -0.72

15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 1.77 -0.09 1.74 -0.10

 1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 -0.51 0.03 -0.50 0.03

�1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 -0.11 0.01 -0.11 0.01

(b) Contributions from the long period band

Corrections �r and �~t due to a zonal tidal term of frequency f include both in phase (ip) and

out of phase (op) parts. From equations (5a) and (7) one �nds that

�r =

�
3

2
sin2 ��

1

2

�
(�R

(ip)

f cos �f + �R
(op)

f sin �f ); (16a)

and

�~t = sin 2� (�T
(ip)

f cos �f + �T
(op)

f sin �f ) n̂; (16b)

where

�R(ip)f =

r
5

4�
�hRf Hf and �R(op)f = �

r
5

4�
�hIfHf ; (16c)

�T (ip)f =
3

2

r
5

4�
�lRf Hf and �T (op)f = �

3

2

r
5

4�
�lIfHf : (16d)
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Table 7.3b. Corrections due to frequency variation of Love and Shida numbers for zonal tides. Units:

mm. All terms with radial correction � 0.05 mm are shown. Nominal values are h = 0:6026 and

l = 0:0831 for the elastic case, and hR = 0:6078 and lR = 0:0847 for the real parts in the anelastic

case. For each frequency, the in phase amplitudes �R
(ip)

f and �T
(ip)

f are shown on the �rst line, and

the out of phase amplitudes �R
(op)

f
and �T

(op)

f
on the second line. Frequencies shown are in degrees

per hour.

Name Frequency Doodson � s h p N 0 ps ` `0 F D 
 �Relas
f �T elasf �Ranel

f �Tanelf

0.00221 55,565 0 0 0 0 1 0 0 0 0 0 1 -0.05 0.00 0.47 0.23

0.16 0.07

Ssa 0.08214 57,555 0 0 2 0 0 0 0 0 -2 2 -2 0.05 0.00 -0.20 -0.12

-0.11 -0.05

Mm 0.54438 65,455 0 1 0 -1 0 0 -1 0 0 0 0 0.06 0.00 -0.11 -0.08

-0.09 -0.04

Mf 1.09804 75,555 0 2 0 0 0 0 0 0 -2 0 -2 0.12 0.00 -0.13 -0.11

-0.15 -0.07

1.10024 75,565 0 2 0 0 1 0 0 0 -2 0 -1 0.05 0.00 -0.05 -0.05

-0.06 -0.03

Permanent deformation

The zonal part of the degree 2 potential contains a time-independent constituent of amplitude

(�0:31460)m. A permanent deformation due to this constituent forms a part of the site displacement

computed from Equation (8) using the nominal values h2 = 0:6026 and l2 = 0:0831 when ignoring

anelasticity. The permanent part of radial displacement thus computed is

r
5

4�
(0:6026)(�0:31460)

�
3

2
sin2 � �

1

2

�
= �0:1196

�
3

2
sin2 ��

1

2

�
meters; (17a)

and the transverse component, which is in the northward direction, is

r
5

4�
(0:0831)(�0:31460)3 cos� sin� = �0:0247 sin 2� meters: (17b)

This permanent deformation must be removed from the displacement vector computed by the

procedure described above in order to obtain the temporally varying part of the tide-induced site

displacement. If the nominal values for the anelastic case (h2 = 0:6078; l2 = 0:0847) were used in the

�rst step computation, one should have �0:1206 and �0:0252 respectively in the expressions for the

radial and northward components (instead of �0:1196 and �0:0247).

If the h(2)-latitude dependence of the Love numbers were accounted for in the �rst step, i.e. if

the change h2 ! h(�) = h(0) + h(2)[(3 sin2 � � 1)=2] and l2 ! l(�) = l(0) + l(2)[(3 sin2 � � 1)=2] were

made, the values will change accordingly.

The restitution of the indirect e�ect of the permanent tide is done to be consistent with the

XVIII IAG General Assembly Resolution 16; but to get the permanent tide at the station, one should
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use the same formula (equations (17a) and (17b)) replacing the Love numbers by the 
uid limit Love

numbers which are l = 0 and h = 1+ k with k = 0:94.

Rotational Deformation Due to Polar Motion

The variation of station coordinates caused by the pole tide is recommended to be taken into

account. Let us choose x̂; ŷ and ẑ as a terrestrial system of reference. The ẑ axis is oriented along the

Earth's mean rotation axis, the x̂ axis is in the direction of the adopted origin of longitude and the ŷ

axis is orthogonal to the x̂ and ẑ axes and in the plane of the 90� E meridian.

The centrifugal potential caused by the Earth's rotation is

V =
1

2
[r2j~
j2 � (~r � ~
)2]; (18)

where ~
 = 
(m1x̂ +m2ŷ + (1 +m3)ẑ). 
 is the mean angular velocity of rotation of the Earth, mi

are small dimensionless parameters, m1, m2 describing polar motion and m3 describing variation in

the rotation rate, r is the radial distance to the station.

Neglecting the variations in m3 which induce displacements that are below the mm level, the

m1 and m2 terms give a �rst order perturbation in the potential V (Wahr, 1985)

�V (r; �; �) = �

2r2

2
sin 2� (m1 cos�+m2 sin �): (19)

The radial displacement Sr and the horizontal displacements S� and S� (positive upwards, south

and east respectively in a horizon system at the station) due to �V are obtained using the formulation

of tidal Love numbers (Munk and MacDonald, 1960):

Sr = h2
�V

g
;

S� =
`2

g
@��V; (20)

S� =
`2

g

1

sin �
@��V:

In general, these computed displacements have a non-zero average over any given time span

because m1 and m2, used to �nd �V , have a non-zero average. Consequently, the use of these results

will lead to a change in the estimated mean station coordinates. When mean coordinates produced

by di�erent users are compared at the centimeter level, it is important to ensure that this e�ect has

been handled consistently. It is recommended that m1 and m2 used in Equation 19 be replaced by

parameters de�ned to be zero for the Terrestrial Reference Frame discussed in Chapter 3.

Thus, de�ne

xp = m1 � �m1; (21)

yp = �(m2 � �m2);
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where �m1 and �m2 are the values of m1 and m2 for the Terrestrial Reference Frame. Then, using Love

number values appropriate to the pole tide (h = 0:6027, l = 0:0836) and r = a = 6:378� 106m, one

�nds

Sr = �32 sin 2�(xp cos�� yp sin�) mm;

S� = �9 cos 2�(xp cos�� yp sin �) mm; (22)

S� = 9 cos �(xp sin�+ yp cos�) mm:

for xp and yp in seconds of arc.

Taking into account that xp and yp vary, at most, 0.8 arcsec, the maximum radial displacement

is approximately 25 mm, and the maximum horizontal displacement is about 7 mm.

If X , Y , and Z are Cartesian coordinates of a station in a right-handed equatorial coordinate

system, we have the displacements of coordinates

[dX; dY; dZ]T = RT [S�; S�; Sr]
T ; (23)

where

R =

0
@ cos � cos� cos � sin � � sin �

� sin� cos� 0

sin � cos� sin � sin� cos �

1
A :

The deformation caused by the pole tide also leads to time dependent perturbations in the C21
and S21 geopotential coe�cients (see Chapter 6).

Antenna Deformation

Changes in antenna height and axis o�set due to temperature changes can be modeled simply.

Let V be the antenna height and A the axis o�set. changes due to temperature, T , are then

given by

dV = kV (T � T0); and

dA = k0A(T � T0);

where k and k0 are estimated constants and T0 is the reference temperature. Typically k and k0 are

of the order of 10�5.

Atmospheric Loading

Temporal variations in the geographic distribution of atmospheric mass load the Earth and

deform its surface. Displacement variations are dominated by e�ects of synoptic pressure systems;

length scales of 1000-2000 km and periods of two weeks. Pressure loading e�ects are larger at high

latitudes due to the larger storms found there. E�ects are smaller at low latitude sites (35S to 35N)

and at sites within 300 km of the sea or ocean. Theoretical studies by Rabbel and Zschau (1985),

Rabbel and Schuh (1986), vanDam and Wahr (1987), and Manabe et al. (1991) demonstrate that

vertical displacements of up to 25 mm are possible with horizontal e�ects of one-third this amount.

All pressure loading analyses make the assumption that the response of the ocean to changes

in air pressure is inverse barometric. It is likely that the ocean responds to pressure as an inverted
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barometer at periods of a few days to a few years. (See Chelton and En�eld (1986) or Ponte et al.

(1991) for a summary of observational evidence for the inverted barometer response.) A local inverted

barometer response is probably appropriate for periods as short as 3 or 4 days. On the other hand,

the decidedly nonequilibrium diurnal ocean tides imply that the global response is certainly not an

inverted barometer at periods close to a day.

There are many methods for computing atmospheric loading corrections. In contrast to ocean

tidal e�ects, analysis of the situation in the atmospheric case does not bene�t from the presence of

a well-understood periodic driving force. Otherwise, estimation of atmospheric loading via Green's

function techniques is analogous to methods used to calculate ocean loading e�ects. Rabbel and Schuh

(1986) recommend a simpli�ed form of the dependence of the vertical crustal displacement on pressure

distribution. It involves only the instantaneous pressure at the site in question, and an average pressure

over a circular region C with a 2000 km radius surrounding the site. The expression for the vertical

displacement (mm) is

�r = �0:35p� 0:55�p (15)

where p is the local pressure anomaly with respect to the standard pressure of 101.3 kPA (equivalent

to 1013 mbar), and �p the pressure anomaly within the 2000 km circular region mentioned above. Both

quantities are in 10�1 kPA (equivalent to mbar). Note that the reference point for this displacement is

the site location at standard pressure. Equation 15 permits one to estimate the seasonal displacement

due to the large-scale atmospheric loading with an error less than �1 mm (Rabbel and Schuh, 1986).

An additional mechanism for characterizing �p may be applied. The two-dimensional surface

pressure distribution surrounding a site is described by

p(x; y) = A0 + A1x+ A2y + A3x
2 +A4xy + A5y

2;

where x and y are the local East and North distances of the point in question from the VLBI site.

The pressure anomaly �p may be evaluated by the simple integration

�p =

R R
C
dx dy p(x; y)R R
C
dx dy

giving

�p = A0 + (A3 + A5)R
2=4;

where R2 = (x2 + y2).

It remains the task of the data analyst to perform a quadratic �t to the available weather data

to determine the coe�cients A0�5.

vanDam and Wahr (1987) computed the displacements due to atmospheric loading by performing

a convolution sum between barometric pressure data and the mass loading Green's Function. They

found that the corrections based on Equation 15 are inadequate for stations close to the coast. For

these coastal stations, Equation 15 can be improved by extending the regression equation.

A few investigators (Manabe et al., 1991; MacMillan and Gipson, 1994; vanDam and Herring,

1994; vanDam et al., 1994) have attempted to calculate site dependent pressure responses by regressing
local pressure changes with theoretical, VLBI or GPS height variations. For example vanDam and

Herring (1994) �nd signi�cant site displacements in some VLBI stations which can be modeled by

a simple linear regression. Table 7.4 shows the relationship between variations in local atmospheric

pressure and theoretical radial surface displacements for these sites as found in their analysis. This

rate is available by anonymous ftp to gracie.grdl.noaa.gov.
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Table 7.4. Regression Coe�cients

Station Slope (mm/mbar)

GILC -0.45 � .001

ONSA -0.32 � .001

WETT -0.46 � .002

WEST -0.43 � .002

HATC -0.40 � .002

NRAO -0.41 � .002

KASH -0.04 � .020

MOJA -0.42 � .004

GRAS -0.55 � .002

RICH -0.35 � .002

KAUA -0.26 � .005

Postglacial Rebound

The current state-of-the-art model of the global process of postglacial rebound is that described

in Peltier (1994). The model consists of a history of the variations in ice thickness from the time of

the last glacial maximum (LGM) until the present coupled with a radial pro�le of viscosity in the

planetary mantle. The ice model, called ICE-4G, is a signi�cant improvement over the previous model

of Tushingham and Peltier (1991) called ICE-3G in that it has been constrained to �t the detailed

history of relative sea level rise at Barbados that is derivative of dated coral sequences that extend

from the LGM to the present.

The planet's response to the model deglaciation event is computed by �rst solving an integral

equation to determine the site dependent variation of ocean bathymetry since the LGM in order to en-

sure that the ocean surface remains a gravitational equipotential. Time dependent, three dimensional

displacement �elds are then determined by spectral convolution of the visco-elastic impulse response

Green function for the planet with the complete history of surface mass loading (with its distinct ice

and ocean components). A succinct review of the complete theory for the three dimensional displace-

ment calculation and a recent application to the computation of VLBI baseline variations will be found

in Peltier (1995).

A �le containing a listing of the radial and horizontal displacements for a number of sites is

available by anonymous ftp. ftp to maia.usno.navy.mil. Change directories to conventions (cd con-

ventions). The �le is called pgr.model. Any comments or corrections to this �le should be directed to

Prof. Richard Peltier (peltier@rainbow.physics.utoronto.ca).
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CHAPTER 8 TIDAL VARIATIONS IN THE EARTH'S ROTATION

Periodic variations in UT1 due to tidal deformation of the polar moment of inertia were derived

by Yoder et al. (1981) including the tidal deformation of the Earth with a decoupled core. This model

uses e�ective Love numbers that di�er from the bulk value of 0.301 because of the oceans and the 
uid

core giving rise to di�erent theoretical values of the ratio k=C for the fortnightly and monthly terms.

However, Yoder et al. recommend the value of 0.94 for k=C for both cases. Oceanic tides also cause

variations in UT1 represented by models given by Brosche et al. (1991, 1989), Dickman (1993, 1991,

1990, 1989), Gross (1993), Herring and Dong (1994), and Ray et al. (1994). The contribution of the

oceanic tides is split into a part which is in phase with the solid Earth tides and an out-of-phase part.

Table 8.1 provides corrections for the tidal variations in UT1�UTC with periods between �ve

and 35 days. This is identical to tables in IERS Technical Notes 3 and 13 which de�ned UT1R�UTC,
���R, and ! � !R. Table 8.1 continues to de�ne UT1R�UTC, ���R, and ! � !R.

UT1� UT1R =

41X
i=1

Ai sin �i

���R =

41X
i=1

A0
i cos �i

! � !R =

41X
i=1

A00
i cos �i

�i =

5X
j=1

aij�j

aij = integer multipliers of the �j (l, l
0, F , D or 
) for the ith tide given in the �rst �ve columns of

Table 8.1. Ai, A
0
i, A

00
i are given in columns 7-9 respectively in Table 8.1.

Table 8.2 is identical to Table 8.2 in IERS Technical Note 13 which de�ned UT1S�UTC, ���S,
and !�!S except that the table below corrects one misprint in the out-of-phase term for the 18.6-year

tide. Table 8.2 provides corrections for the tidal variations with periods from �ve days to 18.6 years

and incorporates the most signi�cant e�ects of oceanic tides using the model of Dickman (1993).

UT1�UT1S =

62X
i=1

Bi sin �i + Ci cos �i

���S =

62X
i=1

B0
i cos �i + C0

i sin �i

! � !S =
62X
i=1

B00
i cos �i + C00

i sin �i

�i are de�ned the same way as for UT1R above except the aij are given in the �rst �ve columns of

Table 8.2. Bi, Ci, B
0
i, C

0
i, B

00
i , and C

00
i are given in columns 7-12 respectively in Table 8.2.
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Table 8.3 provides corrections for daily and sub-daily tidal variations in the Earth's rotation

from Ray (1995). Values corrected using Table 8.3 are referred to as UT1D, � � �D, and ! � !D.

Those corrected using Table 8.1 and 8.3 will then be called UT1DR, � � �DR, and ! � !DR, and

those corrected using Table 8.2 and 8.3 will be called UT1DS, ���DS, and ! � !DS.

UT1�UT1D =

8X
i=1

Di sin �i +Ei cos �i

���D =

8X
i=1

D0
i cos �i +E0

i sin �i

! � !D =

8X
i=1

D00
i cos �i + E00

i sin �i

�i =

6X
j=1

cij
i + �i

cij = integer multipliers of the 
j (l, l
0, F , D, 
, or �) for the ith tide given in columns 2-7 of Table

8.3. �i = the phase given in column 8 of Table 8.3.

Table 8.4 provides corrections for daily and subdaily tidal variations in polar motion from Ray

(1995). Values corrected by using this table are referred to as xD and yD and are obtained by

x� xD =

8X
i=1

Fi sin �i + Gi cos �i;

y � yD =

8X
i=1

Hi sin �i +Ki cos �i;

where Fi, Gi, Hi, and Ki are given in the table and

�i =

6X
j=1

cij
i + �i:

cij = integer multipliers of the 
i (l, l
0, F , D, 
, or �) for the ith tide given in columns 2-7 of Table

8.4. �i = the phase given in column 8 of Table 8.4.
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Table 8.1. Zonal Tide Terms With Periods Up to 35 Days. UT1R, �R, and !R represent the

regularized forms of UT1, the duration of the day �, and the angular velocity of the Earth, !. The

units are 10�4 s for UT, 10�5 s for �, and 10�14 rad/s for !.

ARGUMENT* PERIOD UT1�UT1R ���R ! � !R

Coe�cient of Coe�cient of

l l0 F D 
 Days Sin (Argument) Cos (Argument)

1 0 2 2 2 5.64 -0.02 0.3 -0.2

2 0 2 0 1 6.85 -0.04 0.4 -0.3

2 0 2 0 2 6.86 -0.10 0.9 -0.8

0 0 2 2 1 7.09 -0.05 0.4 -0.4

0 0 2 2 2 7.10 -0.12 1.1 -0.9

1 0 2 0 0 9.11 -0.04 0.3 -0.2

1 0 2 0 1 9.12 -0.41 2.8 -2.4

1 0 2 0 2 9.13 -0.99 6.8 -5.8

3 0 0 0 0 9.18 -0.02 0.1 -0.1

-1 0 2 2 1 9.54 -0.08 0.5 -0.5

-1 0 2 2 2 9.56 -0.20 1.3 -1.1

1 0 0 2 0 9.61 -0.08 0.5 -0.4

2 0 2 -2 2 12.81 0.02 -0.1 0.1

0 1 2 0 2 13.17 0.03 -0.1 0.1

0 0 2 0 0 13.61 -0.30 1.4 -1.2

0 0 2 0 1 13.63 -3.21 14.8 -12.5

0 0 2 0 2 13.66 -7.76 35.7 -30.1

2 0 0 0 -1 13.75 0.02 -0.1 0.1

2 0 0 0 0 13.78 -0.34 1.5 -1.3

2 0 0 0 1 13.81 0.02 -0.1 0.1

0 -1 2 0 2 14.19 -0.02 0.1 -0.1

0 0 0 2 -1 14.73 0.05 -0.2 0.2

0 0 0 2 0 14.77 -0.73 3.1 -2.6

0 0 0 2 1 14.80 -0.05 0.2 -0.2

0 -1 0 2 0 15.39 -0.05 0.2 -0.2

1 0 2 -2 1 23.86 0.05 -0.1 0.1

1 0 2 -2 2 23.94 0.10 -0.3 0.2

1 1 0 0 0 25.62 0.04 -0.1 0.1

-1 0 2 0 0 26.88 0.05 -0.1 0.1

-1 0 2 0 1 26.98 0.18 -0.4 0.3

-1 0 2 0 2 27.09 0.44 -1.0 0.9

1 0 0 0 -1 27.44 0.53 -1.2 1.0

1 0 0 0 0 27.56 -8.26 18.8 -15.9

1 0 0 0 1 27.67 0.54 -1.2 1.0

0 0 0 1 0 29.53 0.05 -0.1 0.1

1 -1 0 0 0 29.80 -0.06 0.1 -0.1

-1 0 0 2 -1 31.66 0.12 -0.2 0.2

-1 0 0 2 0 31.81 -1.82 3.6 -3.0

-1 0 0 2 1 31.96 0.13 -0.3 0.2

1 0 -2 2 -1 32.61 0.02 0.0 0.0

-1 -1 0 2 0 34.85 -0.09 0.2 -0.1
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Table 8.2. Zonal Tide Terms. UT1S1, �S1, and !S1 represent the regularized forms of UT1, the

duration of the day �, and the angular velocity of the Earth, !. The units are 10�4 s for UT, 10�5 s

for �, and 10�14 rad/s for !.

ARGUMENT* PERIOD UT1�UT1S ���S !� !S
Coe�cient of

l l0 F D 
 Days Sin Cos Cos Sin Cos Sin

1 0 2 2 2 5.64 -0.02 0.3 -0.2

2 0 2 0 1 6.85 -0.04 0.4 -0.3

2 0 2 0 2 6.86 -0.10 0.9 -0.8

0 0 2 2 1 7.09 -0.05 0.4 -0.4

0 0 2 2 2 7.10 -0.12 1.1 -0.9

1 0 2 0 0 9.11 -0.04 0.3 -0.2

1 0 2 0 1 9.12 -0.40 0.01 2.7 0.1 -2.3 -0.1

1 0 2 0 2 9.13 -0.98 0.03 6.7 0.2 -5.7 -0.2

3 0 0 0 0 9.18 -0.02 0.1 -0.1

-1 0 2 2 1 9.54 -0.08 0.5 -0.5

-1 0 2 2 2 9.56 -0.20 1.3 -1.1

1 0 0 2 0 9.61 -0.08 0.5 -0.4

2 0 2 -2 2 12.81 0.02 -0.1 0.1

0 1 2 0 2 13.17 0.03 -0.1 0.1

0 0 2 0 0 13.61 -0.30 1.4 -1.2

0 0 2 0 1 13.63 -3.20 0.09 14.7 0.4 -12.4 -0.4

0 0 2 0 2 13.66 -7.73 0.21 35.6 1.0 -30.0 -0.8

2 0 0 0 -1 13.75 0.02 -0.1 0.1

2 0 0 0 0 13.78 -0.34 1.5 -1.3

2 0 0 0 1 13.81 0.02 -0.1 0.1

0 -1 2 0 2 14.19 -0.02 0.1 -0.1

0 0 0 2 -1 14.73 0.05 -0.2 0.2

0 0 0 2 0 14.77 -0.72 0.02 3.1 0.1 -2.6 -0.1

0 0 0 2 1 14.80 -0.05 0.2 -0.2

0 -1 0 2 0 15.39 -0.05 0.2 -0.2

1 0 2 -2 1 23.86 0.05 -0.1 0.1

1 0 2 -2 2 23.94 0.10 -0.3 0.2

1 1 0 0 0 25.62 0.04 -0.1 0.1

-1 0 2 0 0 26.88 0.05 -0.1 0.1

-1 0 2 0 1 26.98 0.18 -0.4 0.3

-1 0 2 0 2 27.09 0.44 -1.0 0.9

1 0 0 0 -1 27.44 0.53 -1.2 1.0

1 0 0 0 0 27.56 -8.33 0.12 19.0 0.3 -16.0 -0.2

1 0 0 0 1 27.67 0.54 -1.2 1.0

0 0 0 1 0 29.53 0.05 -0.1 0.1

1 -1 0 0 0 29.80 -0.06 0.1 -0.1

-1 0 0 2 -1 31.66 0.12 -0.2 0.2

-1 0 0 2 0 31.81 -1.84 0.02 3.6 0.0 -3.0 0.0

-1 0 0 2 1 31.96 0.13 -0.3 0.2

1 0 -2 2 -1 32.61 0.02 0.0 0.0

-1 -1 0 2 0 34.85 -0.09 0.2 -0.1

0 2 2 -2 2 91.31 -0.06 0.0 0.0
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0 1 2 -2 1 119.61 0.03 0.0 0.0

0 1 2 -2 2 121.75 -1.88 1.0 -0.8

0 0 2 -2 0 173.31 0.25 -0.1 0.1

0 0 2 -2 1 177.84 1.17 -0.4 0.3

0 0 2 -2 2 182.62 -48.84 0.11 16.8 0.0 -14.2 0.0

0 2 0 0 0 182.63 -0.19 0.1 -0.1

2 0 0 -2 -1 199.84 0.05 0.0 0.0

2 0 0 -2 0 205.89 -0.55 0.2 -0.1

2 0 0 -2 1 212.32 0.04 0.0 0.0

0 -1 2 -2 1 346.60 -0.05 0.0 0.0

0 1 0 0 -1 346.64 0.09 0.0 0.0

0 -1 2 -2 2 365.22 0.83 -0.1 0.1

0 1 0 0 0 365.26 -15.55 0.02 2.6 0.0 -2.2 0.0

0 1 0 0 1 386.00 -0.14 0.0 0.0

1 0 0 -1 0 411.78 0.03 0.0 0.0

2 0 -2 0 0 1095.17 -0.14 0.0 0.0

-2 0 2 0 1 1305.47 0.42 0.0 0.0

-1 1 0 1 0 3232.85 0.04 0.0 0.0

0 0 0 0 2 3399.18 7.90 0.1 -0.1

0 0 0 0 1 6798.38 -1637.68 -0.10 -15.2 0.0 12.8 0.0

Table 8.3. Diurnal and subdiurnal zonal tide terms. The units are 10�4 s for UT, 10�5 s for �, and

10�14 rad/s for !.

Tide l l0 F D 
 � phase Period UT1�UT1D ���D ! � !D

Coe�cients of

(deg.) (hours) Sin Cos Cos Sin Cos Sin

Q1 -1 0 -2 0 -2 1 -90 26.868 0.02 0.05 -1.4 2.8 1.2 -2.4

O1 0 0 -2 0 -2 1 -90 25.819 0.12 0.16 -7.1 9.4 6.0 -7.9

P1 0 0 -2 2 -2 1 -90 24.066 0.03 0.05 -1.8 3.2 1.5 -2.7

K1 0 0 0 0 0 1 90 23.935 0.09 0.18 -5.4 11.2 4.6 -9.4

N2 -1 0 -2 0 -2 2 0 12.658 -0.04 -0.02 4.5 -1.8 -3.8 1.6

M2 0 0 -2 0 -2 2 0 12.421 -0.16 -0.07 19.6 -8.7 -16.6 7.4

S2 0 0 -2 2 -2 2 0 12.000 -0.08 0.00 9.5 -0.5 -8.1 0.4

K2 0 0 0 0 0 2 0 11.967 -0.02 0.00 2.5 -0.5 -2.1 0.4

� = 100�.4606184+ 360�.98564737(MJD-51544.5) Earth's rotation angle

See Chapter 5 for de�nitions of l, l0, F , D, 
.
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Table 8.4. Diurnal and subdiurnal tide terms for polar motion. The units are msec. of arc for �x and

�y.

Tide l l0 F D 
 � phase Period �x �y

Coe�cients of

(deg.) (hours) Sin Cos Sin Cos

Q1 -1 0 -2 0 -2 1 -90 26.868 -0.026 0.006 -0.006 -0.026

O1 0 0 -2 0 -2 1 -90 25.819 -0.133 0.049 -0.049 -0.133

P1 0 0 -2 2 -2 1 -90 24.066 -0.050 0.025 -0.025 -0.050

K1 0 0 0 0 0 1 90 23.935 -0.152 0.078 -0.078 -0.152

N2 -1 0 -2 0 -2 2 0 12.658 -0.057 -0.013 0.011 0.033

M2 0 0 -2 0 -2 2 0 12.421 -0.330 -0.028 0.037 0.196

S2 0 0 -2 2 -2 2 0 12.000 -0.145 0.064 0.059 0.087

K2 0 0 0 0 0 2 0 11.967 -0.036 0.017 0.018 0.022
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CHAPTER 9 TROPOSPHERIC MODEL

Optical Techniques

The formulation of Marini and Murray (1973) is commonly used in laser ranging. The formula

has been tested by comparison with ray-tracing radiosonde pro�les.

The correction to a one-way range is

�R =
f(�)

f(�;H)
�

A+B

sinE +
B=(A+B)

sinE+0:01

; (1)

where

A = 0:002357P0+ 0:000141e0; (2)

B = (1:084� 10�8)P0T0K + (4:734� 10�8)
P 2
0

T0

2

(3� 1=K)
; (3)

K = 1:163� 0:00968 cos2�� 0:00104T0+ 0:00001435P0; (4)

where

�R = range correction (meters),

E = true elevation of satellite,

P0 = atmospheric pressure at the laser site (in 10�1 kPa, equivalent to millibars),

T0 = atmospheric temperature at the laser site (degrees Kelvin),

e0 = water vapor pressure at the laser site (10�1 kPa, equivalent to millibars),

f(�) = laser frequency parameter ( � = wavelength in micrometers), and

f(�;H) = laser site function.

Additional de�nitions of these parameters are available. The water vapor pressure, e0, can be calcu-

lated from a relative humidity measurement, Rh(%) by

e0 =
Rh

100
� 6:11� 10

7:5(T0�273:15)

237:3+(T0�273:15) :

The laser frequency parameter, f(�), is

f(�) � 0:9650+
0:0164

�2
+

0:000228

�4
:

f(�) = 1 for a ruby laser, [i.e. f(0.6943) = 1], while f(�G) = 1:02579 and f(�IR) = 0:97966 for green

and infrared YAG lasers.

The laser site function is

f(�;H) = 1� 0:0026 cos2�� 0:00031H;

where � is the latitude and H is the geodetic height (km).

Radio Techniques

The di�erences between mathematical tropospheric models are often less than the errors which

would be introduced by the character and distribution of the wet component and by the departures of
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the refractivity from azimuthal symmetry. For this reason it is customary in the analysis of geodetic

data to estimate the zenith atmospheric delay and to model only the mapping function, which is

the ratio of delay at a given elevation angle to the zenith delay. The mapping function may be for

the hydrostatic, wet, or total troposphere delay. Accordingly, the IERS conventional model applies

primarily to the mapping functions. For the most accurate a priori hydrostatic delay, desirable when
the accuracy of the estimate of the zenith wet delay is important, the formula of Saastamoinen (1972)

as given by Davis et al. 1985) should be used.

Comparisons of many mapping functions with the ray tracing of a global distribution of ra-

diosonde data have been made by Janes et al. (1991) and by Mendes and Langley (1994). For

observations below 10� elevation, which may be included in geodetic programs in order to increase

the precision of the vertical component of site position, the mapping functions of Lanyi (1984), Ifadis

(1986), Herring (1992, designated MTT) and Niell (1996, designated NMF) are the most accurate.

Only the last three were developed for observations below an elevation of 6�, with MTT and NMF

being valid to 3� and Ifadis to 2�.

Each of these mapping functions consists of a component for the water vapor and a component

for either the total atmosphere (Lanyi) or the hydrostatic contribution to the total delay (Ifadis, MTT,

and NMF). In all cases the wet mapping should be used as the function partial derivative for estimating

the residual atmosphere zenith delay.

The parameters of the atmosphere that are readily accessible at the time of the observation are

the surface temperature, pressure, and relative humidity. The mapping functions of Lanyi, Ifadis, and

Herring were developed to make use of this information. Lanyi additionally allows for parameterization

in terms of the height of a surface isothermal layer, the lapse rate from the top of this layer to the

tropopause, and the height of the tropopause. Including the surface meteorology without these data

results in larger discrepancies from radiosonde data than the Ifadis and Herring models.

The hydrostatic mapping function of Niell di�ers from the other three by being independent of

surface meteorology. It relies instead on the greater contribution by the conditions in the atmosphere

above approximately 1 km, which are strongly seasonal dependent. The RMS variation is comparable

to those using Ifadis and MTT, and all three are less than that from the Lanyi model when only

surface data are available. Thus NMF o�ers comparable precision and accuracy to Ifadis and MTT,

when they are provided with accurate surface meteorology data, but with no dependence on external

measurements.

Thus, if information is available on the vertical temperature distribution in the atmosphere,

Lanyi is preferred. Otherwise one of the other three mapping functions should be used.
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CHAPTER 10 RADIATION PRESSURE REFLECTANCE MODEL

For a near-Earth satellite the solar radiation pressure acceleration, is given by:

��r = �

�
A

R

�2
CR

a

m

~R

R
;

where

� = 4:560� 10�6 newtons/m2 (1367 watts/m2),

A = astronomical unit in meters,

R = heliocentric radius vector to the satellite,

a = cross-sectional area (m2) of the satellite perpendicular to ~R,

m = satellite mass,

CR = re
ectivity coe�cient, usually an adjusted parameter.

The radiation pressure due to backscatter from the Earth is ignored. The model for the Earth's

and Moon's shadows should include the umbra and the penumbra (Haley, 1973).

Earth Radius 6402 km

Moon Radius 1738 km

Solar Radius 696000 km

Global Positioning System

For GPS satellites, the solar radiation pressure models T10 (for Block I) and T20 (for Block

II and IIA) of Fliegel et al. (1992), Gallini and Fliegel (1995) and Fliegel and Gallini (1996) are

recommended. These models include thermal reradiation. A preliminary model for the forthcoming

Block IIR satellites, which may begin to replace Block II/IIA as early as January 1997, is given here

as T30.

Those models provide the X and Z components of the total nominal solar pressure force as

functions of the angle B between the Sun and the +Z axis of the satellite. For Block I, II, and IIA, 0

< B < 180 degrees, but Block IIR, 0 < B < 360 degrees (no \noon turn").

The model formulae for T10 are (angles in radians):

X = �4:55 sinB + 0:08 sin(2B + 0:9)� 0:06 cos(4B + 0:08) + 0:08;

Z = �4:54 cosB + 0:20 sin(2B � 0:3)� 0:03 sin 4B:

The model formulae for T20 are:

X = �8:96 sinB + 0:16 sin 3B + 0:10 sin5B � 0:07 sin 7B;

Z = �8:43 cosB:

The model formulae for T30 (Fliegel, 1995) are:

X = �11:0 sinB � 0:2 sin 3B + 0:2 sin 5B;
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Z = �11:3 cosB + 0:1 cos3B + 0:2 cos5B:

In both cases the units are 10�5 N.
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CHAPTER 11GENERAL RELATIVISTIC MODELS FOR TIME, COORDINATES

AND EQUATIONS OF MOTION

The relativistic treatment of the near-Earth satellite orbit determination problem includes cor-

rections to the equations of motion, the time transformations, and the measurement model. The two

coordinate systems generally used when including relativity in near-Earth orbit determination solu-

tions are the solar system barycentric frame of reference and the geocentric or Earth-centered frame

of reference.

Ashby and Bertotti (1986) constructed a locally inertial E-frame in the neighborhood of the

gravitating Earth and demonstrated that the gravitational e�ects of the Sun, Moon, and other planets

are basically reduced to their tidal forces, with very small relativistic corrections. Thus the main

relativistic e�ects on a near-Earth satellite are those described by the Schwarzschild �eld of the Earth

itself. This result makes the geocentric frame more suitable for describing the motion of a near-Earth

satellite (Ries et al., 1988).

The time coordinate in the inertial E-frame is Terrestrial Time (designated TT) (Guinot, 1991)

which can be considered to be equivalent to the previously de�ned Terrestrial Dynamical Time (TDT).

This time coordinate (TT) is realized in practice by International Atomic Time (TAI), whose rate is

de�ned by the atomic second in the International System of Units (SI). Terrestrial Time adopted by

the International Astronomical Union in 1991 di�ers from Geocentric Coordinate Time (TCG) by a

scaling factor:

TCG� TT = LG � (MJD� 43144:0)� 86400 seconds;

where MJD refers to the modi�ed Julian date. Figure 11.1 shows graphically the relationships between

the time scales. See IERS Technical Note 13, pages 137{142 for copies of the IAU Recommendations

relating to these time scales.

Equations of Motion for an Arti�cial Earth Satellite

The correction to the acceleration of an arti�cial Earth satellite �~a is

�~a =
GM�

c2r3

�
[2(� + 
)

GM�

r
� 
v2]~r+ 2(1 + 
)(~r � ~v)~v

�
; (1)

where

c= speed of light,

�; 
 = PPN parameters equal to 1 in General Relativity,

~r;~v;~a= geocentric satellite position, velocity, and acceleration, respectively,

GM� = geocentric constant of gravitation.

The e�ects of Lense-Thirring precession (frame-dragging), geodesic (de Sitter) precession, and

the relativistic e�ects of the Earth's oblateness have been neglected.

Equations of Motion in the Barycentric Frame

The n-body equations of motion for the solar system frame of reference (the isotropic Parame-

terized Post-Newtonian system with Barycentric Coordinate Time (TCB) as the time coordinate) are

required to describe the dynamics of the solar system and arti�cial probes moving about the solar
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system (for example, see Moyer, 1971). These are the equations applied to the Moon's motion for

Lunar Laser Ranging (Newhall et al., 1987). In addition, relativistic corrections to the laser range

measurement, the data timing, and the station coordinates are required (see Chapter 12).

Scale E�ect and Choice of Time Coordinate

A previous IAU de�nition of the time coordinate in the barycentric frame required that only

periodic di�erences exist between Barycentric Dynamical Time (TDB) and Terrestrial Dynamical

Time (TDT) (Kaplan, 1981). As a consequence, the spatial coordinates in the barycentric frame had

to be rescaled to keep the speed of light unchanged between the barycentric and the geocentric frames

(Misner, 1982; Hellings, 1986). Thus, when barycentric (or TDB) units of length were compared to

geocentric (or TDT) units of length, a scale di�erence, L, appeared. This is no longer required with

the use of the TCG time scale.

The di�erence between TCB and TDB is given in seconds by

TCB� TDB = LB � (MJD� 43144:0)� 86400:

The di�erence between Barycentric Coordinate Time (TCB) and Geocentric Coordinate Time

(TCG) involves a four-dimensional transformation,

TCB� TCG = c�2
�Z t

t0

[
v2e
2
+ Uext(~xe)]dt+ ~ve � (~x� ~xe)

�
;

where ~xe and ~ve denote the barycentric position and velocity of the Earth's center of mass and ~x is the

barycentric position of the observer. Uext is the Newtonian potential of all of the solar system bodies

apart from the Earth evaluated at the geocenter. t0 is chosen to be consistent with 1977 January 1,

0h0m0s TAI and t is TCB. An approximation is given in seconds by

(TCB� TCG) = LC � (MJD� 43144:0)� 86400+ c�2 ~ve � (~x� ~xe) + P:

with MJD measured in TAI. Table 4.1 lists the values of the rates LB, LC, and LG. Periodic di�erences

denoted by P have a maximum amplitude of around 1.6 ms. These can be evaluated by the \FBL"

model of Fairhead, Bretagnon and Lestrade (1995). A comparison with the numerical time ephemeris

TE245 (Fukushima, 1995) revealed that this series provides the smallest deviation from TE245 for

the years 1980{1999 after removing a linear trend. Users may expect the FBL model to provide the

periodic part in TCB-TT within a few ns for a few decades around the present time. This is su�cient

for all precision measurement including timing observations of millisecond pulsars.

Software to implement the FBL model is available by anonymous ftp to maia.usno.navy.mil and

is located in the directory /conventions/chapter11. The �les of interest are called fbl.f and fbl.results.

This model is based on earlier works (Fairhead et al., 1988; Fairhead and Bretagnon, 1990).
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TDT TT

Terrestrial Dynamical Time Terrestrial Time

TDT � TT ' TAI + 32s.184

TCG

Geocentric Coordinate Time

TCG - TT = LG ��T

4-dimensional

space-time

transformation

Linear transformation

LC ��T

TDB TCB

Barycentric Dynamical Time Barycentric Coordinate Time

TCB = TDB +LB ��T

�T = (date in days - 1977 January 1, 0 h)TAI� 86400 sec

Fig 11.1 Relations between time scales.
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CHAPTER 12 GENERAL RELATIVISTIC MODELS FOR PROPAGATION

VLBI Time Delay

There have been many papers dealing with relativistic e�ects which must be accounted for in

VLBI processing; see (Robertson, 1975), (Finkelstein et al., 1983), (Hellings, 1986), (Pavlov, 1985),
(Cannon et al., 1986), (So�el et al., 1986), (Zeller et al., 1986), (Sovers and Fanselow, 1987), (Zhu

and Groten, 1988), (Shahid-Saless et al., 1991), (So�el et al., 1991). As pointed out by Boucher

(1986), the relativistic correction models proposed in various articles are not quite compatible. To

resolve di�erences between the procedures and to arrive at a standard model, a workshop was held

at the U. S. Naval Observatory on 12 October 1990. The proceedings of this workshop have been

published (Eubanks, 1991) and the model given here is based on the consensus model resulting from

that workshop. Much of this chapter dealing with VLBI time delay is taken directly from that work

and the reader is urged to consult that publication for further details. One change from that model

has been made in order to adopt the IAU/IUGG conventions for the scale of the terrestrial reference

system, in accord with 1991 resolutions (see Appendix in McCarthy, 1992). Geodetic lengths should

be expressed in \SI units," i.e., be consistent with the second as realized by a clock running at the

TAI rate at sea level. The only change needed to the 1992 formulation to satisfy the IAU/IUGG

Resolutions is to include the Earth's potential, U�, in the total potential U in the delay equation

(Equation 9). The only observable e�ect of this change will be an increase of the VLBI terrestrial

scale by 1.39385806 parts in 109.

As pointed out by Eubanks, the use of clocks running at the geoid and delays calculated \at

the geocenter" ignoring the scale change induced by the Earth's gravitational potential means that

terrestrial distances calculated from the consensus model will not be the same as those calculated

using the expressions in this chapter which are equivalent to using meter sticks on the surface of the

Earth. The accuracy limit chosen for the consensus VLBI relativistic delay model is 10�12 seconds

(one picosecond) of di�erential VLBI delay for baselines less than two Earth radii in length. In the

model all terms of order 10�13 seconds or larger were included to ensure that the �nal result was

accurate at the picosecond level. Source coordinates derived from the consensus model will be solar

system barycentric and should have no apparent motions due to solar system relativistic e�ects at the

picosecond level.

The consensus model was derived from a combination of �ve di�erent relativistic models for the

geodetic delay. These are the Master�t/Modest model, due to Fanselow and Thomas (see Treuhaft

and Thomas, in (Eubanks, 1991), and (Sovers and Fanselow, 1987)), the I. I. Shapiro model (see Ryan,

in (Eubanks, 1991)), the Hellings-Shahid-Saless model (Shahid-Saless et al., 1991) and in (Eubanks,

1991), the So�el, Muller, Wu and Xu model (So�el et al., 1991) and in (Eubanks, 1991), and the

Zhu-Groten model (Zhu and Groten, 1988) and in (Eubanks, 1991). Baseline results are expressed in

\local" or \SI" coordinates appropriate for clocks running at the TAI rate on the surface of the Earth,

to be consistent with the more general IERS conventions on the terrestrial reference system scale.

This means that the gravitational potential of the Earth is now included in U ; the scale e�ects of the

geocentric station velocities can still be ignored as they will at most cause scale changes of order 1 part

in 1012 (see Zhu and Groten, So�el et al., and Fukushima, all in Eubanks (1991) and Shahid-Saless et

al. (1991) for further details on the implications of these choices). As the time argument is now based

on TAI, which is a quasi-local time on the geoid, distance estimates from these conventions will now

be consistent in principle with \physical" distances.
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The model is designed for use in the reduction of VLBI observations of extra-galactic objects

acquired from the surface of the Earth. The delay error caused by ignoring the annual parallax is > 1

psec for objects closer than several hundred thousand light years, which includes all of the Milky Way

galaxy. The model is not intended for use with observations of sources in the solar system, nor is it

intended for use with observations made from space-based VLBI, from either low or high Earth orbit,

or from the surface of the Moon (although it would be suitable with obvious changes for observations

made entirely from the Moon).

It is assumed that the inertial reference frame is de�ned kinematically and that very distant

objects, showing no apparent motion, are used to estimate precession and the nutation series. This

frame is not truly inertial in a dynamical sense, as included in the precession constant and nutation

series are the e�ects of the geodesic precession (� 19 milli arc seconds / year). So�el et al. (in Eubanks

(1991)) and Shahid-Saless et al. (1991) give details of a dynamically inertial VLBI delay equation. At

the picosecond level, there is no practical di�erence for VLBI geodesy and astrometry except for the

adjustment in the precession constant.

Although the delay to be calculated is the time of arrival at station 2 minus the time of arrival

at station 1, it is the time of arrival at station 1 that serves as the time reference for the measurement.

Unless explicitly stated otherwise, all vector and scalar quantities are assumed to be calculated at t1,

the time of arrival at station 1 including the e�ects of the troposphere.

The notation follows that of Hellings (1986) and Hellings and Shahid-Saless in Eubanks (1991) as

closely as possible. It is assumed that the standard IAU models for precession, nutation, Earth rotation

and polar motion have been followed and that all geocentric vector quantities have thus been rotated

into a nearly non-rotating celestial frame. The errors in the standard IAU models are negligible for the

purposes of the relativistic transformations. The notation itself is given in Table 12.1. The consensus

model separates the total delay into a classical delay and a general relativistic delay, which are then

modi�ed by relativistic transformations between geocentric and solar system barycentric frames.

Table 12.1. Notation used in the model

ti the time of arrival of a radiointerferometric signal at the ith VLBI receiver in terrestrial time

(TAI)

Ti the time of arrival of a radiointerferometric signal at the ith VLBI receiver in barycentric time

(TCB or TDB)

tgi the \geometric" time of arrival of a radiointerferometric signal at the ith VLBI receiver including

the gravitational \bending" delay and the change in the geometric delay caused by the existence

of the atmospheric propagation delay but neglecting the atmospheric propagation delay itself

tvi the \vacuum" time of arrival of a radiointerferometric signal at the ith VLBI receiver including

the gravitational delay but neglecting the atmospheric propagation delay and the change in the

geometric delay caused by the existence of the atmospheric propagation delay

tiJ the approximation to the time that the ray path to station i passed closest to gravitating body

J

�tatmi
the atmospheric propagation delay for the ith receiver = ti � tgi

�tgrav the di�erential gravitational time delay, commonly known as the gravitational \bending delay"

~xi(ti) the geocentric radius vector of the ith receiver at the geocentric time ti
~b ~x2(t1)� ~x1(t1) and is thus the geocentric baseline vector at the time of arrival t1
~b0 the a priori geocentric baseline vector at the time of arrival t1
�~b ~b(t1)�~b0(t1)
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~wi the geocentric velocity of the ith receiver

K̂ the unit vector from the barycenter to the source in the absence of gravitational or aberrational

bending

k̂i the unit vector from the ith station to the source after aberration
~Xi the barycentric radius vector of the ith receiver
~X� the barycentric radius vector of the geocenter
~XJ the barycentric radius vector of the Jth gravitating body
~RiJ the vector from the Jth gravitating body to the ith receiver
~R�J

the vector from the Jth gravitating body to the geocenter
~R�� the vector from the Sun to the geocenter

N̂iJ the unit vector from the Jth gravitating body to the ith receiver
~V� the barycentric velocity of the geocenter

U the gravitational potential at the geocenter plus the terrestrial potential at the surface of the

Earth. At the picosecond level, only the solar and terrestrial potentials need be included in U

so that U = GM�=j~R�� jc
2 +GM�=a�c

2

Mi the mass of the ith gravitating body

M� the mass of the Earth


 a PPN Parameter = 1 in general relativity

c the speed of light in meters / second

G the Gravitational Constant in Newtons meters2 kilograms�2

a� the equatorial radius of the Earth

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Vector magnitudes are expressed by the absolute value sign [jxj = (�x2i )
1
2 ]. Vectors and scalars

expressed in geocentric coordinates are denoted by lower case (e.g. ~x and t), while quantities in

barycentric coordinates are in upper case (e.g. ~X and T ). MKS units are used throughout. For

quantities such as V�, ~wi, and U it is assumed that a table (or numerical formula) is available as a

function of TAI and that they are evaluated at the atomic time of reception at station 1, t1, unless

explicitly stated otherwise. A lower case subscript (e.g. ~xi) denotes a particular VLBI receiver, while
an upper case subscript (e.g. ~xJ ) denotes a particular gravitating body.

Gravitational Delay

The general relativistic delay, �tgrav, is given for the Jth gravitating body by

�tgravJ = (1 + 
)
GMJ

c3
ln
j~R1J j+ ~K � ~R1J

j~R2J j+ ~K � ~R2J

: (1)

At the picosecond level it is possible to simplify the delay due to the Earth, �tgrav� , which

becomes

�tgrav� = (1 + 
)
GM�

c3
ln
j~x1j+ ~K � ~x1
j~x2j+ ~K � ~x2

: (2)

The Sun, the Earth and Jupiter must be included, as well as the other planets in the solar system

along with the Earth's Moon, for which the maximum delay change is several picoseconds. The major

satellites of Jupiter, Saturn and Neptune should also be included if the ray path passes close to them.

This is very unlikely in normal geodetic observing but may occur during planetary occultations.
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The e�ect on the bending delay of the motion of the gravitating body during the time of propa-

gation along the ray path is small for the Sun but can be several hundred picoseconds for Jupiter (see

Sovers and Fanselow (1987) page 9). Since this simple correction, suggested by Sovers and Fanselow

(1987) and Hellings (1986) among others, is su�cient at the picosecond level, it was adapted for the

consensus model. It is also necessary to account for the motion of station 2 during the propagation

time between station 1 and station 2. In this model ~RiJ , the vector from the Jth gravitating body to

the ith receiver, is iterated once, giving

t1J = min[t1; t1 � K̂ � ( ~XJ(t1)� ~X1(t1))]; (3)

so that
~R1J (t1) =

~X1(t1)� ~XJ(t1J ); (4)

and

~R2J = ~X2(t1)�
~V�

c
(K̂ �~b0)� ~XJ(t1J ): (5)

Only this one iteration is needed to obtain picosecond level accuracy for solar system objects. If more

accuracy is required, it is probably better to use the rigorous approach of Shahid-Saless et al. (1991).
~X1(t1) is not tabulated, but can be inferred from ~X�(t1) using

~Xi(t1) = ~X�(t1) + ~xi(t1); (6)

which is of su�cient accuracy for use in equations 3, 4, and 5, when substituted into equation 1 but not

for use in computing the geometric delay. The total gravitational delay is the sum over all gravitating

bodies including the Earth,

�tgrav =
X
J

�tgravJ : (7)

Geometric Delay

In the barycentric frame the vacuum delay equation is, to a su�cient level of approximation:

T2 � T1 = �
1

c
K̂ � ( ~X2(T2)� ~X1(T1)) + �tgrav: (8)

This equation is converted into a geocentric delay equation using known quantities by performing

the relativistic transformations relating the barycentric vectors ~Xi to the corresponding geocentric

vectors ~xi, thus converting equation 8 into an equation in terms of ~xi. The related transformation

between barycentric and geocentric time can be used to derive another equation relating T2 � T1 and
t2 � t1, and these two equations can then be solved for the geocentric delay in terms of the geocentric

baseline vector~b. The papers by So�el et al. in Eubanks (1991), Hellings and Shahid-Saless in Eubanks
(1991), Zhu and Groten (1988) and Shahid-Saless et al. (1991) give details of the derivation of the

vacuum delay equation. To conserve accuracy and simplify the equations the delay was expressed

as much as is possible in terms of a rational polynomial. In the rational polynomial form the total

geocentric vacuum delay is given by

tv2 � tv1 =
�tgrav � K̂�~b0

c
[1� (1 + 
)U � j~V�j2

2c2
�

~V��~w2

c2
]�

~V��~b0
c2

(1 + K̂ � ~V�=2c)

1 +
K̂�(~V�+~w2)

c

: (9)
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Given this expression for the vacuum delay, the total delay is found to be

t2 � t1 = tv2 � tv1 + (�tatm2
� �tatm1

) + �tatm1

K̂ � (~w2 � ~w1)

c
: (10)

For convenience the total delay can be divided into separate geometric and propagation delays. The

geometric delay is given by

tg2 � tg1 = tv2 � tv1 + �tatm1

K̂ � (~w2 � ~w1)

c
; (11)

and the total delay can be found at some later time by adding the propagation delay:

t2 � t1 = tg2 � tg1 + (�tatm2
� �tatm1

): (12)

The tropospheric propagation delay in equations 11 and 12 need not be from the same model.

The estimate in equation 12 should be as accurate as possible, while the �tatm model in equation 11

need only be accurate to about an air mass (� 10 nanoseconds). If equation 10 is used instead, the

model should be as accurate as is possible.

If the di�erence, �~b, between the a priori baseline vector ~b0 used in equation 9 and the true

baseline vector is less than roughly three meters, then it su�ces to add �(K̂ � �~b)=c to t2 � t1. If this

is not the case, however, the delay must be modi�ed by adding

�(tg2 � tg1) = �
K̂��~b0
c

1 +
K̂�(~V�+~w2)

c

�
~V� � � ~B
c2

(13)

to the total time delay t2 � t1 from equation 10 or 12.

Observations Close to the Sun

For observations made very close to the Sun, higher order relativistic time delay e�ects become

increasingly important. The largest correction is due to the change in delay caused by the bending of

the ray path by the gravitating body described in Richter and Matzner (1983) and Hellings (1986).

The change to �tgrav is

�tgravi =
(1 + 
)2G2M2

i

c5

~b � (N̂1i + K̂)

(j~Rj1i + ~R1i � K̂)2
; (14)

which should be added to the �tgrav in equation 1.

Summary

Assuming that time t1 is the Atomic (TAI) time of reception of the VLBI signal at receiver 1,

the following steps are recommended to correct the VLBI time delay for relativistic e�ects.

1. Use equation 6 to estimate the barycentric station vector for receiver 1.

2. Use equations 3, 4, and 5 to estimate the vectors from the Sun, the Moon, and each planet except

the Earth to receiver 1.
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3. Use equation 1 to estimate the di�erential gravitational delay for each of those bodies.

4. Use equation 2 to �nd the di�erential gravitational delay due to the Earth.

5. Sum to �nd the total di�erential gravitational delay.

6. Add �tgrav to the rest of the a priori vacuum delay from equation 9.

7. Calculate the aberrated source vector for use in the calculation of the tropospheric propagation

delay:

~ki = K̂ +
~V� + ~wi

c
� K̂

K̂ � (~V� + ~wi)

c
: (15)

8. Add the geometric part of the tropospheric propagation delay to the vacuum delay, equation 11.

9. The total delay can be found by adding the best estimate of the tropospheric propagation delay

t2 � t1 = tg2 � tg1 + [�tatm2
(t1 �

K̂ �~b0
c

;~k2)� �tatm1
(~k1)]: (16)

10. If necessary, apply equation 13 to correct for \post-model" changes in the baseline by adding

equation 13 to the total time delay from equation step 9.

Propagation Correction for Laser Ranging

The space-time curvature near a massive body requires a correction to the Euclidean computation

of range, �. This correction in seconds, �t, is given by (Holdridge, 1967)

�t =
(1 + 
)GM

c3
ln

�
R1 + R2 + �

R1 + R2 � �

�
; (17)

where

c = speed of light,


 = PPN parameter equal to 1 in General Relativity,

R1 = distance from the body's center to the beginning of the light path,

R2 = distance from the body's center to the end of the light path,

GM = gravitational parameter of the de
ecting body.

For near-Earth satellites, working in the geocentric frame of reference, the only body to be considered

is the Earth (Ries et al., 1989). For lunar laser ranging, which is formulated in the solar system

barycentric reference frame, the Sun and the Earth must be considered (Newhall et al., 1987).

In the computation of the instantaneous space-�xed positions of a station and a lunar re
ector

in the analysis of LLR data, the body-centered coordinates of the two sites are a�ected by a scale

reduction and a Lorentz contraction e�ect (Martin et al., 1985). The scale e�ect is about 15 cm

in the height of a tracking station, while the maximum value of the Lorentz e�ect is about 3 cm.
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The equation for the transformation of ~r, the geocentric position vector of a station expressed in the

geocentric frame, is

~rb = ~r

�
1�


�

c2

�
+

1

2

�
~V � ~r
c2

�
~V ; (18)

where

~rb = station position expressed in the barycentric frame,

� = gravitational potential at the geocenter (excluding the Earth's mass),
~V = barycentric velocity of the Earth,

A similar equation applies to the selenocentric re
ector coordinates; the maximum value of the Lorentz

e�ect is about 1 cm (Newhall et al., 1987).
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GLOSSARY

AAM Atmospheric Angular Momentum

BIH Bureau International de l'Heure

BIPM Bureau International des Poids et Mesures

CEP Celestial Ephemeris Pole

CERGA Centre d'Etudes et de Recherches Geodynamiques et Astronomiques

CCIR International Radio Consultative Committee

CIO Conventional International Origin

CODE Center for Orbit Determination in Europe

CSR Center for Space Research, University of Texas

DORIS Doppler Orbit determination and Radiopositioning Integrate on Satellite

DUT Delft University of Technology

ECMWF European Centre for Medium-range Weather Forecasting

EMR See NRCan

EOP Earth Orientation Parameters

ESOC European Space Operations Center

GFZ GeoForschungsZentrum

GMST Greenwich Mean Sidereal Time

GPS Global Positioning System

IAG International Association of Geodesy

IAU International Astronomical Union

IERS International Earth Rotation Service

ICRF IERS Celestial Reference Frame

IGS International GPS Service for geodynamics

ITRF IERS Terrestrial Reference Frame

IRP IERS Reference Pole

IRM IERS Reference Meridian

JPL Jet Propulsion Laboratory

LLR Lunar Laser Ranging

MCC Russian Mission Control

NEOS National Earth Orientation Service

NOAA National Oceanic and Atmospheric Administration

NRCan Natural Resources Canada , formerly EMR

SLR Satellite Laser Ranging

SI Systeme International

SIO Scripps Institution of Oceanography

TAI Temps Atomique International

TT Terrestrial Time

UKMO U.K. Meteorological O�ce

USNO United States Naval Observatory

UTC Coordinated Universal Time

UTXMO Dept. of Astronomy. The University of Texas at Austin.

VLBI Very Long Baseline Interferometry
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